
DB2® Universal Database for z/OS

Application

Programming

Guide

and

Reference

FOR

JAVA
™

Version

8

SC18-7414-00

���

DB2® Universal Database for z/OS

Application

Programming

Guide

and

Reference

FOR

JAVA
™

Version

8

SC18-7414-00

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

277.

First

Edition

(March

2004)

This

edition

applies

to

Version

8

of

IBM

DB2

Universal

Database

for

z/OS

(DB2

UDB

for

z/OS),

product

number

5625-DB2,

and

to

any

subsequent

releases

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

Specific

changes

are

indicated

by

a

vertical

bar

to

the

left

of

a

change.

A

vertical

bar

to

the

left

of

a

figure

caption

indicates

that

the

figure

has

changed.

Editorial

changes

that

have

no

technical

significance

are

not

noted.

©

Copyright

International

Business

Machines

Corporation

1998,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Who

should

read

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Terminology

and

citations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

How

to

read

the

syntax

diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

How

to

send

your

comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Summary

of

changes

to

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Chapter

1.

Introduction

to

Java

application

support

.

.

.

.

.

.

.

.

.

. 1

Chapter

2.

JDBC

application

programming

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Basic

JDBC

application

programming

concepts

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Basic

steps

in

writing

a

JDBC

application

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Java

packages

for

JDBC

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Variables

in

JDBC

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

How

JDBC

applications

connect

to

a

data

source

.

.

.

.

.

.

.

.

.

.

. 6

Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Connecting

to

a

data

source

using

the

DriverManager

interface

with

a

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Connecting

to

a

data

source

using

the

DataSource

interface

.

.

.

.

.

.

. 12

Setting

the

isolation

level

for

a

JDBC

transaction

.

.

.

.

.

.

.

.

.

.

. 13

JDBC

connection

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Committing

or

rolling

back

JDBC

transactions

.

.

.

.

.

.

.

.

.

.

.

. 14

Closing

a

connection

to

a

JDBC

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 14

JDBC

interfaces

for

executing

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Using

the

Statement.executeQuery

method

to

retrieve

data

from

DB2

tables

16

Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Using

the

PreparedStatement.executeQuery

method

to

retrieve

data

from

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Using

CallableStatement

methods

to

call

stored

procedures

.

.

.

.

.

.

. 19

Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

. 20

Handling

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

. 23

Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

. 26

Handling

an

SQLWarning

under

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

. 27

Advanced

JDBC

application

programming

concepts

.

.

.

.

.

.

.

.

.

.

. 27

LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

. 28

Using

large

objects

(LOBs)

in

JDBC

applications

with

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Java

data

types

for

retrieving

or

updating

LOB

column

data

in

JDBC

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

ROWIDs

in

JDBC

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 32

Using

ROWIDs

with

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

.

.

.

.

. 33

Using

graphic

string

constants

in

JDBC

applications

.

.

.

.

.

.

.

.

.

. 33

Distinct

types

in

JDBC

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Savepoints

in

JDBC

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Retrieving

identity

column

values

in

JDBC

applications

.

.

.

.

.

.

.

.

. 35

Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application

37

Using

ResultSetMetaData

to

learn

about

a

ResultSet

.

.

.

.

.

.

.

.

.

. 40

©

Copyright

IBM

Corp.

1998,

2004

iii

||

|
||
|
||

||

||
||

Using

DatabaseMetaData

to

learn

about

a

data

source

.

.

.

.

.

.

.

.

. 41

Using

ParameterMetaData

to

learn

about

parameters

in

a

PreparedStatement

42

Making

batch

updates

in

JDBC

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Retrieving

information

from

a

BatchUpdateException

.

.

.

.

.

.

.

.

.

. 45

Characteristics

of

a

JDBC

ResultSet

under

the

DB2

Universal

JDBC

Driver

46

Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Creating

and

deploying

DataSource

objects

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Providing

extended

client

information

to

the

DB2

server

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Chapter

3.

SQLJ

application

programming

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Basic

SQLJ

application

programming

concepts

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Basic

steps

in

writing

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Java

packages

for

SQLJ

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Variables

in

SQLJ

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Comments

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Connecting

to

a

data

source

using

SQLJ

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Setting

the

isolation

level

for

an

SQLJ

transaction

.

.

.

.

.

.

.

.

.

.

. 63

Committing

or

rolling

back

SQLJ

transactions

.

.

.

.

.

.

.

.

.

.

.

. 64

Savepoints

in

SQLJ

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Closing

the

connection

to

a

data

source

in

an

SQLJ

application

.

.

.

.

.

. 65

SQL

statements

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Creating

and

modifying

DB2

objects

in

an

SQLJ

application

.

.

.

.

.

.

. 66

How

an

SQLJ

application

retrieves

data

from

DB2

tables

.

.

.

.

.

.

.

. 66

Using

a

named

iterator

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

. 67

Using

a

positioned

iterator

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

. 69

Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Multiple

open

iterators

for

the

same

SQL

statement

in

an

SQLJ

application

74

Multiple

open

instances

of

an

iterator

in

an

SQLJ

application

.

.

.

.

.

.

. 76

Calling

stored

procedures

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

. 76

Handling

SQL

errors

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Handling

SQL

warnings

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

. 78

Advanced

SQLJ

application

programming

concepts

.

.

.

.

.

.

.

.

.

.

. 78

Using

SQLJ

and

JDBC

in

the

same

application

.

.

.

.

.

.

.

.

.

.

.

. 79

LOBs

in

SQLJ

applications

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

. 82

Java

data

types

for

retrieving

or

updating

LOB

column

data

in

SQLJ

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Using

large

objects

(LOBs)

in

SQLJ

applications

with

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

ROWIDs

in

SQLJ

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 85

Using

graphic

string

constants

in

SQLJ

applications

.

.

.

.

.

.

.

.

.

. 87

Distinct

types

in

SQLJ

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Controlling

the

execution

of

SQL

statements

in

SQLJ

.

.

.

.

.

.

.

.

.

. 88

Retrieving

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application

89

Making

batch

updates

in

SQLJ

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Iterators

as

passed

variables

for

positioned

UPDATE

or

DELETE

operations

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Using

scrollable

iterators

in

an

SQLJ

application

.

.

.

.

.

.

.

.

.

.

. 96

Chapter

4.

JDBC

and

SQLJ

reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Java,

JDBC,

and

SQL

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Properties

for

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

. 106

DataSource

properties

for

the

JDBC/SQLJ

2.0

Driver

for

OS/390

.

.

.

.

.

. 113

Comparison

of

driver

support

for

JDBC

APIs

.

.

.

.

.

.

.

.

.

.

.

.

. 114

iv

Application

Programming

Guide

and

Reference

for

Java™

||

|
||

||

||
||

|
||

||
||

||

||

SQLJ

statement

reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

SQLJ

clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

SQLJ

host-expression

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

SQLJ

implements-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

SQLJ

with-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

SQLJ

connection-declaration-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

SQLJ

iterator-declaration-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

SQLJ

executable-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

SQLJ

context-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

SQLJ

statement-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

SQLJ

SET-TRANSACTION-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

SQLJ

assignment-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

SQLJ

iterator-conversion-clause

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Selected

sqlj.runtime

classes

and

interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

DB2

Universal

JDBC

Driver

reference

information

.

.

.

.

.

.

.

.

.

.

. 150

Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC

.

.

.

.

.

. 150

JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

SQLJ

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Error

codes

issued

by

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 165

SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

. 165

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

167

Setting

up

the

environment

for

Java

routines

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Setting

up

the

environment

for

interpreted

Java

routines

.

.

.

.

.

.

.

. 167

Defining

a

Java

routine

to

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Defining

a

JAR

file

for

a

Java

routine

to

DB2

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Calling

SQLJ.INSTALL_JAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

Calling

SQLJ.REPLACE_JAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

Calling

SQLJ.REMOVE_JAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Calling

SQLJ.DB2_INSTALL_JAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Calling

SQLJ.DB2_REPLACE_JAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Writing

a

Java

routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Differences

between

Java

routines

and

stand-alone

Java

programs

.

.

.

. 181

Differences

between

Java

routines

and

other

routines

.

.

.

.

.

.

.

.

. 181

Using

static

and

non-final

variables

in

a

Java

routine

.

.

.

.

.

.

.

.

. 182

Writing

a

Java

stored

procedure

to

return

result

sets

.

.

.

.

.

.

.

.

. 183

Testing

a

Java

routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

.

.

.

.

.

. 187

Preparing

JDBC

programs

for

execution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Preparing

SQLJ

programs

for

execution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Translating

and

compiling

SQLJ

source

code

.

.

.

.

.

.

.

.

.

.

.

. 189

Customizing

an

SQLJ

serialized

profile

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Binding

packages

or

plans

for

SQLJ

programs

.

.

.

.

.

.

.

.

.

.

.

. 207

Preparing

Java

routines

for

execution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Preparing

interpreted

Java

routines

with

no

SQLJ

statements

.

.

.

.

.

. 212

Preparing

interpreted

Java

routines

with

SQLJ

statements

.

.

.

.

.

.

. 212

Creating

JAR

files

for

Java

routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Example

of

preparing

a

Java

routine

for

execution

.

.

.

.

.

.

.

.

.

. 214

Running

JDBC

and

SQLJ

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Chapter

7.

Installing

JDBC

and

SQLJ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Installing

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Loading

the

DB2

Universal

JDBC

Driver

libraries

.

.

.

.

.

.

.

.

.

.

. 218

Contents

v

||
||
||
||
||
||
||

||

||
||

Setting

environment

variables

for

the

DB2

Universal

JDBC

Driver

.

.

.

.

. 218

Customizing

the

DB2

Universal

JDBC

Driver

global

properties

file

.

.

.

. 219

Setting

program

control

for

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

. 222

Enabling

the

DB2-supplied

stored

procedures

used

by

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Binding

the

packages

for

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

. 226

Enabling

distributed

transactions

that

include

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

Converting

JDBC/SQLJ

Driver

for

OS/390

serialized

profiles

for

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

Enabling

retrieval

of

DBCLOB

columns

with

LOB

locators

on

DB2

UDB

for

OS/390

and

z/OS

servers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Installing

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

feature

.

.

.

.

. 231

Loading

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

libraries

.

.

.

. 232

Setting

environment

variables

for

z/OS

Application

Connectivity

to

DB2

for

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Installing

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Loading

the

JDBC

and

SQLJ

libraries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

Setting

DB2

subsystem

parameters

for

SQLJ

support

.

.

.

.

.

.

.

.

. 235

Setting

program

control

for

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

.

. 235

Setting

environment

variables

for

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

. 236

The

SQLJ/JDBC

run-time

properties

file

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Properties

in

the

JDBC/SQLJ

Driver

for

OS/390

SQLJ/JDBC

run-time

properties

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Customizing

the

JDBC

profile

(optional)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

Binding

the

DBRMs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Getting

started

using

the

sample

Java

applications

.

.

.

.

.

.

.

.

.

. 241

Chapter

8.

JDBC

and

SQLJ

security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

. 243

User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

. 243

User

ID-only

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

. 245

Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Kerberos

security

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

. 247

Security

under

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

.

.

.

.

.

.

. 250

Determining

an

authorization

ID

with

the

JDBC/SQLJ

Driver

for

OS/390

250

DB2

attachment

types

and

security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Chapter

9.

JDBC

and

SQLJ

connection

pooling

support

.

.

.

.

.

.

.

. 251

Chapter

10.

Universal

Driver

type

4

connectivity

JDBC

and

SQLJ

distributed

transaction

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Chapter

11.

JDBC

and

SQLJ

global

transaction

support

.

.

.

.

.

.

.

. 259

Chapter

12.

JDBC/SQLJ

Driver

for

OS/390

multiple

z/OS

context

support

261

Connecting

when

multiple

z/OS

context

support

is

not

enabled

.

.

.

.

.

.

. 261

Connecting

when

multiple

z/OS

context

support

is

enabled

.

.

.

.

.

.

.

. 261

Enabling

multiple

z/OS

context

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

Multiple

context

performance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

Connection

sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

Chapter

13.

Diagnosing

JDBC

and

SQLJ

problems

.

.

.

.

.

.

.

.

.

. 263

Diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

Universal

JDBC

Driver

263

JDBC

and

SQLJ

problem

diagnosis

with

the

DB2

Universal

JDBC

Driver

263

vi

Application

Programming

Guide

and

Reference

for

Java™

|
||

||
||

|
||

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

. 265

Formatting

trace

data

for

C/C++

native

driver

code

with

the

DB2

Universal

JDBC

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Diagnosing

SQLJ

problems

with

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

. 270

Formatting

trace

data

with

the

JDBC/SQLJ

Driver

for

OS/390

.

.

.

.

.

. 271

Running

utilities

to

format

diagnostic

data

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Appendix.

Special

considerations

for

CICS

applications

.

.

.

.

.

.

.

. 273

Choosing

parameter

values

for

the

SQLJ/JDBC

run-time

properties

file

.

.

.

. 273

Choosing

parameter

values

for

the

db2genJDBC

utility

.

.

.

.

.

.

.

.

.

. 273

Choosing

the

number

of

cursors

for

JDBC

result

sets

.

.

.

.

.

.

.

.

.

. 274

Setting

environment

variables

for

the

CICS

environment

.

.

.

.

.

.

.

.

. 274

Connecting

to

DB2

in

the

CICS

environment

.

.

.

.

.

.

.

.

.

.

.

.

. 274

Commit

and

rollback

processing

in

CICS

SQLJ

and

JDBC

applications

.

.

.

. 275

Abnormal

terminations

in

the

CICS

attachment

facility

.

.

.

.

.

.

.

.

.

. 275

Running

traces

in

a

CICS

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Contents

vii

|
||

viii

Application

Programming

Guide

and

Reference

for

Java™

About

this

book

This

book

describes

DB2®

UDB

for

z/OS®

support

for

Java™.

This

support

lets

you

access

relational

databases

from

Java

application

programs.

Who

should

read

this

book

This

book

is

for

the

following

users:

v

DB2

UDB

for

z/OS

application

developers

who

are

familiar

with

Structured

Query

Language

(SQL)

and

who

know

the

Java

programming

language.

v

DB2

UDB

for

z/OS

system

programmers

who

are

installing

JDBC

and

SQLJ

support.

Terminology

and

citations

In

this

information,

DB2

Universal

Database™

for

z/OS

is

referred

to

as

"DB2

UDB

for

z/OS."

In

cases

where

the

context

makes

the

meaning

clear,

DB2

UDB

for

z/OS

is

referred

to

as

"DB2."

When

this

information

refers

to

titles

of

books

in

this

library,

a

short

title

is

used.

(For

example,

"See

DB2

SQL

Reference"

is

a

citation

to

IBM®

DB2

Universal

Database

for

z/OS

SQL

Reference.)

When

referring

to

a

DB2

product

other

than

DB2

UDB

for

z/OS,

this

information

uses

the

product’s

full

name

to

avoid

ambiguity.

The

following

terms

are

used

as

indicated:

DB2

Represents

either

the

DB2

licensed

program

or

a

particular

DB2

subsystem.

DB2

PM

Refers

to

the

DB2

Performance

Monitor

tool,

which

can

be

used

on

its

own

or

as

part

of

the

DB2

Performance

Expert

for

z/OS

product.

C,

C++,

and

C

language

Represent

the

C

or

C++

programming

language.

CICS®

Represents

CICS

Transaction

Server

for

z/OS

or

CICS

Transaction

Server

for

OS/390®.

IMS™

Represents

the

IMS

Database

Manager

or

IMS

Transaction

Manager.

MVS™

Represents

the

MVS

element

of

the

z/OS

operating

system,

which

is

equivalent

to

the

Base

Control

Program

(BCP)

component

of

the

z/OS

operating

system.

RACF®

Represents

the

functions

that

are

provided

by

the

RACF

component

of

the

z/OS

Security

Server.

How

to

read

the

syntax

diagrams

The

following

rules

apply

to

the

syntax

diagrams

that

are

used

in

this

book:

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

statement.

The

───�

symbol

indicates

that

the

statement

syntax

is

continued

on

the

next

line.

©

Copyright

IBM

Corp.

1998,

2004

ix

The

�───

symbol

indicates

that

a

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

statement.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

required_item

��

v

Optional

items

appear

below

the

main

path.

��

required_item

optional_item

��

If

an

optional

item

appears

above

the

main

path,

that

item

has

no

effect

on

the

execution

of

the

statement

and

is

used

only

for

readability.

��

optional_item

required_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

required_item

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

required_item

optional_choice1

optional_choice2

��

If

one

of

the

items

is

the

default,

it

appears

above

the

main

path

and

the

remaining

choices

are

shown

below.

��

required_item

default_choice

optional_choice

optional_choice

��

v

An

arrow

returning

to

the

left,

above

the

main

line,

indicates

an

item

that

can

be

repeated.

��

required_item

�

repeatable_item

��

If

the

repeat

arrow

contains

a

comma,

you

must

separate

repeated

items

with

a

comma.

��

required_item

�

,

repeatable_item

��

x

Application

Programming

Guide

and

Reference

for

Java™

A

repeat

arrow

above

a

stack

indicates

that

you

can

repeat

the

items

in

the

stack.

v

Keywords

appear

in

uppercase

(for

example,

FROM).

They

must

be

spelled

exactly

as

shown.

Variables

appear

in

all

lowercase

letters

(for

example,

column-name).

They

represent

user-supplied

names

or

values.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

DB2

UDB

for

z/OS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

reader

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

by

using

only

a

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

Assistive

technology

products,

such

as

screen

readers,

function

with

the

DB2

UDB

for

z/OS

user

interfaces.

Consult

the

documentation

for

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Online

documentation

for

Version

8

of

DB2

UDB

for

z/OS

is

available

in

the

DB2

Information

Center,

which

is

an

accessible

format

when

used

with

assistive

technologies

such

as

screen

reader

or

screen

magnifier

software.

The

DB2

Information

Center

for

z/OS

solutions

is

available

at

the

following

Web

site:

http://publib.boulder.ibm.com/infocenter/db2zhelp.

How

to

send

your

comments

Your

feedback

helps

IBM

to

provide

quality

information.

Please

send

any

comments

that

you

have

about

this

book

or

other

DB2

UDB

for

z/OS

documentation.

You

can

use

the

following

methods

to

provide

comments:

v

Send

your

comments

by

e-mail

to

db2pubs@vnet.ibm.com

and

include

the

name

of

the

product,

the

version

number

of

the

product,

and

the

number

of

the

book.

If

you

are

commenting

on

specific

text,

please

list

the

location

of

the

text

(for

example,

a

chapter

and

section

title,

page

number,

or

a

help

topic

title).

v

You

can

also

send

comments

from

the

Web.

Visit

the

library

Web

site

at:

www.ibm.com/software/db2zos/library.html

This

Web

site

has

a

feedback

page

that

you

can

use

to

send

comments.

v

Print

and

fill

out

the

reader

comment

form

located

at

the

back

of

this

book.

You

can

give

the

completed

form

to

your

local

IBM

branch

office

or

IBM

representative,

or

you

can

send

it

to

the

address

printed

on

the

reader

comment

form.

About

this

book

xi

xii

Application

Programming

Guide

and

Reference

for

Java™

Summary

of

changes

to

this

book

The

principle

changes

to

this

book

are:

v

Chapter

2,

“JDBC

application

programming,”

on

page

3

contains

new

explanations

and

examples

of

JDBC

methods.

It

also

contains

descriptions

of

JDBC

2.0

and

selected

JDBC

3.0

functions.

v

Chapter

3,

“SQLJ

application

programming,”

on

page

53

contains

explanations

of

new

SQLJ

capabilities

that

are

associated

with

JDBC

2.0

and

JDBC

3.0

functions.

v

Chapter

5,

“Creating

Java

stored

procedures

and

user-defined

functions”

contains

information

on

writing

and

running

Java

routines.

v

“Special

considerations

for

CICS

applications”

contains

information

on

running

JDBC™

and

SQLJ

programs

in

the

CICS

environment.

v

Information

on

the

DB2

Universal

JDBC

Driver

has

been

added.

v

Information

on

compiled

Java

stored

procedures

has

been

removed.

v

VisualAge

for

Java

information

has

been

deleted.

©

Copyright

IBM

Corp.

1998,

2004

xiii

|
|
|

|
|
|

|

|

|

xiv

Application

Programming

Guide

and

Reference

for

Java™

Chapter

1.

Introduction

to

Java

application

support

DB2®

Universal

Database

provides

driver

support

for

client

applications

and

applets

that

are

written

in

Java™

using

JDBC,

and

for

embedded

SQL

for

Java

(SQLJ).

JDBC

is

an

application

programming

interface

(API)

that

Java

applications

use

to

access

relational

databases.

DB2

Universal

Database™

support

for

JDBC

lets

you

write

Java

applications

that

access

local

DB2

data

or

remote

relational

data

on

a

server

that

supports

DRDA®.

SQLJ

provides

support

for

embedded

static

SQL

in

Java

applications.

SQLJ

was

initially

developed

by

IBM®,

Oracle®,

and

Tandem

to

complement

the

dynamic

SQL

JDBC

model

with

a

static

SQL

model.

In

general,

Java

applications

use

JDBC

for

dynamic

SQL

and

SQLJ

for

static

SQL.

However,

because

SQLJ

can

inter-operate

with

JDBC,

an

application

program

can

use

JDBC

and

SQLJ

within

the

same

unit

of

work.

This

topic

discusses

the

Java

application

development

environment

provided

by

DB2

Universal

Database.

According

to

the

JDBC

specification,

there

are

four

types

of

JDBC

driver

architectures:

Type

1

Drivers

that

implement

the

JDBC

API

as

a

mapping

to

another

data

access

API,

such

as

Open

Database

Connectivity

(ODBC).

Drivers

of

this

type

are

generally

dependent

on

a

native

library,

which

limits

their

portability.

The

JDBC-ODBC

Bridge

driver

is

an

example

of

a

type

1

driver.

Type

2

Drivers

that

are

written

partly

in

the

Java

programming

language

and

partly

in

native

code.

The

drivers

use

a

native

client

library

specific

to

the

data

source

to

which

they

connect.

Because

of

the

native

code,

their

portability

is

limited.

Type

3

Drivers

that

use

a

pure

Java

client

and

communicate

with

a

server

using

a

database-independent

protocol.

The

server

then

communicates

the

client’s

requests

to

the

data

source.

Type

4

Drivers

that

are

pure

Java

and

implement

the

network

protocol

for

a

specific

data

source.

The

client

connects

directly

to

the

data

source.

DB2

UDB

for

OS/390®

or

z/OS™

supports

a

type

2

driver

and

a

driver

that

combines

type

2

and

type

4

JDBC

implementations.

The

drivers

that

are

supported

in

DB2

UDB

for

OS/390

or

z/OS

are:

DB2

Universal

JDBC

driver

(type

2

and

type

4):

The

DB2

Universal

JDBC

Driver

is

a

single

driver

that

includes

JDBC

type

2

and

JDBC

type

4

behavior,

as

well

as

SQLJ

support.

When

an

application

loads

the

DB2

Universal

JDBC

Driver,

a

single

driver

instance

is

loaded

for

type

2

and

type

4

implementations.

The

application

can

make

type

2

and

type

4

connections

using

this

single

driver

instance.

The

type

2

and

type

4

connections

can

be

made

concurrently.

DB2

Universal

JDBC

Driver

type

2

driver

behavior

is

referred

to

as

©

Copyright

IBM

Corp.

1998,

2004

1

DB2

Universal

JDBC

Driver

type

2

connectivity.

DB2

Universal

JDBC

Driver

type

4

driver

behavior

is

referred

to

as

DB2

Universal

JDBC

Driver

type

4

connectivity.

The

DB2

Universal

JDBC

Driver

is

an

entirely

new

driver,

rather

than

a

follow-on

to

any

other

DB2

JDBC

drivers.

Therefore,

you

can

expect

some

differences

in

behavior

between

this

driver

and

other

drivers.

The

DB2

Universal

JDBC

Driver

supports

these

JDBC

and

SQLJ

functions:

v

Most

of

the

methods

that

are

described

in

the

JDBC

1.2

and

JDBC

2.0

specifications,

and

some

of

the

methods

that

are

described

in

the

JDBC

3.0

specifications.

See

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

114.

v

SQLJ

statements

that

perform

equivalent

functions

to

all

JDBC

methods.

v

Connections

that

are

enabled

for

connection

pooling.

WebSphere

Application

Server

or

another

application

server

does

the

connection

pooling.

v

Implementation

of

Java

user-defined

functions

and

stored

procedures

(Universal

Driver

type

2

connectivity

only).

v

Global

transactions

that

run

under

WebSphere®

Application

Server

Version

5.0

and

above.

v

Distributed

transaction

support

that

implements

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

Java

Transaction

Service

(JTS)

and

Java

Transaction

API

(JTA)

specifications

(Universal

Driver

type

4

connectivity

to

DB2

UDB

for

OS/390

Version

7

or

DB2

UDB

for

z/OS

Version

8

only).

In

general,

you

should

use

Universal

Driver

type

2

connectivity

for

Java

programs

that

run

on

the

same

z/OS

system

or

zSeries®

logical

partition

(LPAR)

as

the

target

DB2

subsystem.

Use

Universal

Driver

type

4

connectivity

for

Java

programs

that

run

on

a

different

z/OS

system

or

LPAR

from

the

target

DB2

subsystem.

For

z/OS

systems

or

LPARs

that

do

not

have

DB2

UDB

for

z/OS,

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

optional

feature

can

be

installed

to

provide

Universal

Driver

type

4

connectivity.

To

use

the

DB2

Universal

JDBC

Driver,

you

need

Java

2

Technology

Edition,

SDK

1.3.1

or

higher.

To

implement

Java

stored

procedures

or

user-defined

functions,

you

need

Java

2

Technology

Edition,

SDK

1.3.1,

SDK

1.4.1,

or

higher.

JDBC/SQLJ

Driver

for

OS/390

with

JDBC

2.0

support

(JDBC/SQLJ

2.0

Driver

for

OS/390):

The

JDBC/SQLJ

2.0

Driver

for

OS/390

is

a

type

2

driver

that

contains

most

of

the

functions

that

are

described

in

the

JDBC

1.2

specification.

This

driver

also

includes

some

of

the

functions

that

are

described

in

the

JDBC

2.0

specification.

See

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

114

for

a

list

of

the

JDBC

methods

that

the

JDBC/SQLJ

2.0

Driver

for

OS/390

supports.

The

JDBC/SQLJ

2.0

Driver

for

OS/390

supports

these

functions:

v

Global

transactions

that

run

under

WebSphere®

Application

Server

Version

4.0

and

above

v

Implementation

of

Java

user-defined

functions

and

stored

procedures

v

SQLJ

statements

that

perform

equivalent

functions

to

all

JDBC

methods

v

Connection

pooling

To

use

this

driver,

you

need

Java

2

Technology

Edition,

SDK

1.3

or

higher.

To

implement

Java

stored

procedures

or

user-defined

functions,

you

need

Java

2

Technology

Edition,

SDK

1.3.1,

SDK

1.4.1

or

higher.

2

Application

Programming

Guide

and

Reference

for

Java™

Chapter

2.

JDBC

application

programming

The

following

topics

explain

DB2

UDB

for

z/OS

JDBC

application

support:

v

“Basic

JDBC

application

programming

concepts”

v

“Advanced

JDBC

application

programming

concepts”

on

page

27

Basic

JDBC

application

programming

concepts

The

following

topics

contain

basic

information

about

writing

JDBC

applications:

v

“Basic

steps

in

writing

a

JDBC

application”

v

“Java

packages

for

JDBC

support”

on

page

6

v

“Variables

in

JDBC

applications”

on

page

6

v

“How

JDBC

applications

connect

to

a

data

source”

on

page

6

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

8

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

a

JDBC/SQLJ

Driver

for

OS/390”

on

page

10

v

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

12

v

“Setting

the

isolation

level

for

a

JDBC

transaction”

on

page

13

v

“JDBC

connection

objects”

on

page

14

v

“Committing

or

rolling

back

JDBC

transactions”

on

page

14

v

“Closing

a

connection

to

a

JDBC

data

source”

on

page

14

v

“JDBC

interfaces

for

executing

SQL”

on

page

15

v

“Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects”

on

page

15

v

“Using

the

Statement.executeQuery

method

to

retrieve

data

from

DB2

tables”

on

page

16

v

“Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables”

on

page

17

v

“Using

the

PreparedStatement.executeQuery

method

to

retrieve

data

from

DB2”

on

page

18

v

“Using

CallableStatement

methods

to

call

stored

procedures”

on

page

19

v

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

20

v

“Handling

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

23

v

“Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver”

on

page

26

v

“Handling

an

SQLWarning

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

27

Basic

steps

in

writing

a

JDBC

application

Writing

a

JDBC

application

has

much

in

common

with

writing

an

SQL

application

in

any

other

language:

In

general,

you

need

to

do

the

following

things:

v

Access

the

Java™

packages

that

contain

JDBC

methods.

v

Declare

variables

for

sending

data

to

or

retrieving

data

from

DB2®

tables.

v

Connect

to

a

data

source.

v

Execute

SQL

statements.

v

Handle

SQL

errors

and

warnings.

v

Disconnect

from

the

data

source.

Although

the

tasks

that

you

need

to

perform

are

similar

to

those

in

other

languages,

the

way

that

you

execute

those

tasks

is

somewhat

different.

Figure

1

on

page

4

is

a

simple

program

that

demonstrates

each

task.

This

program

runs

on

the

DB2

Universal

JDBC

Driver.

©

Copyright

IBM

Corp.

1998,

2004

3

import

java.sql.*;

�1�

public

class

EzJava

{

public

static

void

main(String[]

args)

{

String

urlPrefix

=

"jdbc:db2:";

String

url;

String

empNo;

�2�

Connection

con;

Statement

stmt;

ResultSet

rs;

System.out.println

("****

Enter

class

EzJava");

//

Check

the

that

first

argument

has

the

correct

form

for

the

portion

//

of

the

URL

that

follows

jdbc:db2:,

as

described

//

in

the

Connecting

to

a

data

source

using

the

DriverManager

//

interface

with

the

DB2

Universal

JDBC

Driver

topic.

//

For

example,

for

Universal

Driver

type

2

connectivity,

//

args[0]

might

be

MVS1DB2M.

For

Universal

//

Driver

type

4

connectivity,

args[0]

might

//

be

//stlmvs1:10110/MVS1DB2M.

if

(args.length==0)

{

System.err.println

("Invalid

value.

First

argument

appended

to

"+

"jdbc:db2:

must

specify

a

valid

URL.");

System.exit(1);

}

url

=

urlPrefix

+

args[0];

try

{

//

Load

the

DB2

Universal

JDBC

Driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

�3a�

System.out.println("****

Loaded

the

JDBC

driver");

//

Create

the

connection

using

the

DB2

Universal

JDBC

Driver

con

=

DriverManager.getConnection

(url);

�3b�

//

Commit

changes

manually

con.setAutoCommit(false);

System.out.println("****

Created

a

JDBC

connection

to

the

data

source");

//

Create

the

Statement

stmt

=

con.createStatement();

�4a�

System.out.println("****

Created

JDBC

Statement

object");

//

Execute

a

query

and

generate

a

ResultSet

instance

rs

=

stmt.executeQuery("SELECT

EMPNO

FROM

EMPLOYEE");

�4b�

System.out.println("****

Creaed

JDBC

ResultSet

object");

//

Print

all

of

the

employee

numbers

to

standard

output

device

while

(rs.next())

{

empNo

=

rs.getString(1);

System.out.println("Employee

number

=

"

+

empNo);

}

System.out.println("****

Fetched

all

rows

from

JDBC

ResultSet");

Figure

1.

Simple

JDBC

application

(Part

1

of

2)

4

Application

Programming

Guide

and

Reference

for

Java™

Notes

to

Figure

1

on

page

4:

�1�

This

statement

imports

the

java.sql

package,

which

contains

the

JDBC

core

API.

For

information

on

other

Java

packages

that

you

might

need

to

access,

see

“Java

packages

for

JDBC

support”

on

page

6.

�2�

String

variable

empNo

performs

the

function

of

a

host

variable.

That

is,

it

is

used

to

hold

data

retrieved

from

an

SQL

query.

See

“Variables

in

JDBC

applications”

on

page

6

for

more

information.

�3a�and

�3b�

These

two

sets

of

statements

demonstrate

how

to

connect

to

a

data

source

using

one

of

two

available

interfaces.

See

“How

JDBC

applications

connect

to

a

data

source”

on

page

6

for

more

details.

�4a�

and

�4b�

These

two

sets

of

statements

demonstrate

how

to

perform

a

SELECT

in

JDBC.

For

information

on

how

to

perform

other

SQL

operations,

see

“JDBC

interfaces

for

executing

SQL”

on

page

15.

�5�

This

try/catch

block

demonstrates

the

use

of

the

SQLException

class

for

SQL

error

handling.

For

more

information

on

handling

SQL

errors,

see

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

20

and

“Handling

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

23.

For

information

on

handling

SQL

warnings,

see

“Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver”

on

page

26.

//

Close

the

ResultSet

rs.close();

System.out.println("****

Closed

JDBC

ResultSet");

//

Close

the

Statement

stmt.close();

System.out.println("****

Closed

JDBC

Statement");

//

Connection

must

be

on

a

unit-of-work

boundary

to

allow

close

con.commit();

System.out.println

(

"****

Transaction

committed"

);

//

Close

the

connection

con.close();

�6�

System.out.println("****

Disconnected

from

data

source");

System.out.println("****

JDBC

Exit

from

class

EzJava

-

no

errors");

}

catch

(ClassNotFoundException

e)

{

System.err.println("Could

not

load

JDBC

driver");

System.out.println("Exception:

"

+

e);

e.printStackTrace();

}

catch(SQLException

ex)

�5�

{

System.err.println("SQLException

information");

while(ex!=null)

{

System.err.println

("Error

msg:

"

+

ex.getMessage());

System.err.println

("SQLSTATE:

"

+

ex.getSQLState());

System.err.println

("Error

code:

"

+

ex.getErrorCode());

ex.printStackTrace();

ex

=

ex.getNextException();

//

For

drivers

that

support

chained

exceptions

}

}

}

//

End

main

}

//

End

EzJava

Figure

1.

Simple

JDBC

application

(Part

2

of

2)

Chapter

2.

JDBC

application

programming

5

�6�

This

statement

disconnects

the

application

from

the

data

source.

See

“Closing

a

connection

to

a

JDBC

data

source”

on

page

14.

Java

packages

for

JDBC

support

Before

you

can

invoke

JDBC

methods,

you

need

to

be

able

to

access

all

or

parts

of

various

Java™

packages

that

contain

those

methods.

You

can

do

that

either

by

importing

the

packages

or

specific

classes,

or

by

using

the

fully-qualified

class

names.

You

might

need

the

following

packages

or

classes

for

your

JDBC

program:

java.sql

Contains

the

core

JDBC

API.

javax.naming

Contains

classes

and

interfaces

for

Java

Naming

and

Directory

Interface

(JNDI),

which

is

often

used

for

implementing

a

DataSource.

javax.sql

Contains

JDBC

2.0

standard

extensions.

com.ibm.db2.jcc

Contains

the

DB2-specific

implementation

of

JDBC

for

the

DB2

Universal

JDBC

driver

and

some

functions

of

the

JDBC/SQLJ

Driver

for

OS/390®.

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

Contains

some

functions

of

the

DB2-specific

implementation

of

JDBC/SQLJ

Driver

for

OS/390.

Variables

in

JDBC

applications

As

in

any

other

Java™

application,

when

you

write

JDBC

applications,

you

declare

variables.

In

Java

applications,

those

variables

are

known

as

Java

identifiers.

Some

of

those

identifiers

have

the

same

function

as

host

variables

in

other

languages:

they

hold

data

that

you

pass

to

or

retrieve

from

DB2®

tables.

Identifier

empNo

in

the

sample

program

in

“Basic

steps

in

writing

a

JDBC

application”

on

page

3

is

an

example

of

a

Java

String

identifier

that

holds

data

that

you

retrieve

from

a

CHAR

column

of

a

DB2

table.

Your

choice

of

Java

data

types

can

affect

performance

because

DB2

picks

better

access

paths

when

the

data

types

of

your

Java

variables

map

closely

to

the

DB2

data

types.

“Java,

JDBC,

and

SQL

data

types”

on

page

101

shows

the

recommended

mappings

of

Java

data

types

and

JDBC

data

types

to

SQL

data

types.

How

JDBC

applications

connect

to

a

data

source

Before

you

can

execute

SQL

statements

in

any

SQL

program,

you

must

connect

to

a

database

server.

In

JDBC,

a

database

server

is

known

as

a

data

source.

Figure

2

on

page

7

shows

how

a

Java™

application

connects

to

a

data

source

for

a

type

2

driver

or

DB2

Universal

JDBC

Driver

type

2

connectivity.

6

Application

Programming

Guide

and

Reference

for

Java™

Figure

3

shows

how

a

Java

application

connects

to

a

data

source

for

DB2

Universal

JDBC

Driver

type

4

connectivity.

The

way

that

you

connect

to

a

data

source

depends

on

the

version

of

JDBC

that

you

use.

Connecting

using

the

DriverManager

interface

is

available

for

all

levels

of

JDBC.

Connecting

using

the

DataSource

interface

is

available

with

JDBC

2.0

and

above.

Java application

DriverManager
or

DataSource

Local database
or DB2

subsystem

JDBC driver

Database
server

Figure

2.

Java

application

flow

for

a

type

2

driver

or

DB2

Universal

JDBC

Driver

type

2

connectivity

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure

3.

Java

application

flow

for

DB2

Universal

JDBC

Driver

type

4

connectivity

Chapter

2.

JDBC

application

programming

7

Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver

A

JDBC

application

can

establish

a

connection

to

a

data

source

using

the

JDBC

DriverManager

interface,

which

is

part

of

the

java.sql

package.

The

Java™

application

first

loads

the

JDBC

driver

by

invoking

the

Class.forName

method.

After

the

application

loads

the

driver,

it

connects

to

a

database

server

by

invoking

the

DriverManager.getConnection

method.

For

the

DB2

Universal

JDBC

Driver,

you

load

the

driver

by

invoking

the

Class.forName

method

with

the

following

argument:

com.ibm.db2.jcc.DB2Driver

For

compatibility

with

previous

JDBC

drivers,

you

can

use

the

following

argument

instead:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The

following

code

demonstrates

loading

the

DB2

Universal

JDBC

Driver:

try

{

//

Load

the

DB2®

Universal

JDBC

Driver

with

DriverManager

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

The

catch

block

is

used

to

print

an

error

if

the

driver

is

not

found.

After

you

load

the

driver,

you

connect

to

the

data

source

by

invoking

the

DriverManager.getConnection

method.

You

can

use

one

of

the

following

forms

of

getConnection:

getConnection(String

url);

getConnection(String

url,

user,

password);

getConnection(String

url,

java.util.Properties

info);

The

url

argument

represents

a

data

source,

and

indicates

what

type

of

JDBC

connectivity

you

are

using.

For

DB2

Universal

JDBC

Driver

type

4

connectivity,

specify

a

URL

of

the

following

form:

Syntax

for

a

URL

for

Universal

Driver

type

4

connectivity:

��

jdbc:db2:

//server

jdbc:db2j:net:

:port

/database

�

:

property

=

value

;

��

For

DB2

Universal

JDBC

Driver

type

2

connectivity,

specify

a

URL

of

one

of

the

following

forms:

Syntax

for

a

URL

for

Universal

Driver

type

2

connectivity:

8

Application

Programming

Guide

and

Reference

for

Java™

��

�

�

jdbc:db2:database

jdbc:db2os390:database

jdbc:db2os390sqlj:database

jdbc:default:connection

:

property

=

value

;

jdbc:db2os390:

jdbc:db2os390sqlj:

property

=

value

;

��

The

parts

of

the

URL

have

the

following

meanings:

jdbc:db2:

or

jdbc:db2j:net:

or

jdbc:db2os390:

or

jdbc:db2os390sqlj:

or

jdbc:default:connection

The

meanings

of

the

initial

portion

of

the

URL

are:

jdbc:db2:

or

jdbc:db2os390:

or

jdbc:db2os390sqlj:

Indicates

that

the

connection

is

to

a

server

in

the

DB2

UDB

family.

jdbc:db2os390:

and

jdbc:db2os390sqlj:

are

for

compatibility

of

programs

that

were

written

for

the

JDBC/SQLJ

Driver

for

OS/390.

db2:default:connection

Indicates

that

the

URL

is

intended

for

environments

that

support

an

already-existing

connection,

such

as

CICS,

IMS™,

and

stored

procedures.

jdbc:db2j:net:

Indicates

that

the

connection

is

to

a

remote

IBM®

Cloudscape™

server.

server

The

domain

name

or

IP

address

of

the

database

server.

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

database

server.

This

is

an

integer

between

0

and

65535.

The

default

is

446.

database

A

name

for

the

database

server.

This

name

depends

on

whether

Universal

Driver

type

4

connectivity

or

Universal

Driver

type

2

connectivity

is

used.

For

Universal

Driver

type

4

connectivity:

v

If

the

connection

is

to

a

DB2

for

z/OS

server,

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

v

If

the

connection

is

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

database

is

the

database

name

that

is

defined

during

installation.

v

If

the

connection

is

to

an

IBM

Cloudscape

server,

the

database

is

the

fully-qualified

name

of

the

file

that

contains

the

database.

This

name

must

be

enclosed

in

double

quotation

marks

(").

For

example:

"c:/databases/testdb"

For

Universal

Driver

type

2

connectivity:

v

database

is

a

location

name

that

is

defined

in

the

SYSIBM.LOCATIONS

catalog

table.

Chapter

2.

JDBC

application

programming

9

property=value;

A

property

for

the

JDBC

connection.

For

the

definitions

of

these

properties,

see

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106.

The

info

argument

is

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

Specifying

the

info

argument

is

an

alternative

to

specifying

property=value

strings

in

the

URL.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

the

properties

that

you

can

specify.

Specifying

a

user

ID

and

password

for

a

connection:

There

are

several

ways

to

specify

a

user

ID

and

password

for

a

connection:

v

Use

the

form

of

the

getConnection

method

that

specifies

url

with

property=value;

clauses,

and

include

the

user

and

password

properties

in

the

URL.

v

Use

the

form

of

the

getConnection

method

that

specifies

user

and

password.

v

Use

the

form

of

the

getConnection

method

that

specifies

info,

after

setting

the

user

and

password

properties

in

a

java.util.Properties

object.

Example:

Setting

the

user

ID

and

password

in

a

URL:

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose:"

+

"user=db2adm;password=db2adm;";

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url);

//

Create

connection

Example:

Setting

the

user

ID

and

password

in

user

and

password

parameters:

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

//

Set

URL

for

data

source

String

user

=

"db2adm";

String

password

=

"db2adm";

Connection

con

=

DriverManager.getConnection(url,

user,

password);

//

Create

connection

Example:

Setting

the

user

ID

and

password

in

a

java.util.Properties

object:

Properties

properties

=

new

Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

connection

properties.put("password",

"db2adm");

//

Set

password

for

connection

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

Connecting

to

a

data

source

using

the

DriverManager

interface

with

a

JDBC/SQLJ

Driver

for

OS/390

A

JDBC

application

establishes

a

connection

to

a

data

source

using

the

JDBC

DriverManager

interface,

which

is

part

of

the

java.sql

package.

The

Java

application

first

loads

the

JDBC

driver

by

invoking

the

Class.forName

method.

After

the

application

loads

the

driver,

it

connects

to

a

database

server

by

invoking

the

DriverManager.getConnection

method.

For

the

JDBC/SQLJ

Driver

for

OS/390,

you

load

the

driver

by

invoking

the

Class.forName

method

with

one

of

the

following

arguments:

v

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

This

is

the

preferred

name

for

the

JDBC/SQLJ

Driver

for

OS/390.

v

ibm.sql.DB2Driver

10

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

This

name

is

available

only

to

maintain

compatibility

with

older

DB2

UDB

for

z/OS

JDBC

applications.

The

ibm.sql.DB2Driver

class

automatically

forwards

all

driver

API

calls

to

the

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver.

The

following

code

demonstrates

loading

a

JDBC/SQLJ

Driver

for

OS/390:

try

{

//

Load

the

DB2

for

z/OS

driver

Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

The

catch

block

is

used

to

print

an

error

if

the

driver

is

not

found.

After

you

load

the

driver,

you

connect

to

the

data

source

by

invoking

the

DriverManager.getConnection

method.

You

can

use

one

of

the

following

forms

of

getConnection:

getConnection(String

url);

getConnection(String

url,

String

user,

String

password);

getConnection(String

url,

java.util.Properties

info);

The

url

argument

of

the

getConnection

method

represents

the

data

source.

Specify

one

of

the

following

url

values

for

a

DB2

UDB

for

z/OS

data

source:

jdbc:db2os390:location-name

jdbc:db2os390sqlj:location-name

Each

format

results

in

the

same

behavior.

Both

forms

are

provided

for

compatibility

with

existing

DB2

UDB

for

z/OS

JDBC

applications.

If

location-name

is

not

the

name

of

the

local

DB2

subsystem,

location-name

must

be

defined

in

the

SYSIBM.LOCATIONS

catalog

table.

If

location-name

is

the

local

site,

location-name

must

have

been

specified

in

field

DB2

LOCATION

NAME

of

the

DISTRIBUTED

DATA

FACILITY

panel

during

DB2

installation.

In

addition

to

the

URL

values

shown

above

for

a

DB2

UDB

for

z/OS

data

source,

the

following

URL

has

a

special

meaning

for

type

2

drivers.

jdbc:default:connection

This

URL

is

intended

for

environments

that

support

an

already-existing

connection,

such

as

CICS,

IMS,

and

stored

procedures.

For

some

connections,

you

need

to

specify

a

user

ID

and

password.

To

do

that,

use

the

form

of

the

getConnection

method

that

specifies

user

and

password,

or

the

form

that

specifies

info.

The

info

argument

is

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

For

the

JDBC/SQLJ

Driver

for

OS/390,

you

should

specify

only

the

user

and

password

properties.

The

following

example

demonstrates

how

to

specify

the

user

ID

and

password

as

properties

when

you

create

a

connection

to

a

data

source:

Properties

properties

=

new

Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

connection

properties.put("password",

"db2adm");

//

Set

password

for

connection

String

url

=

"jdbc:db2os390:san_jose";

Chapter

2.

JDBC

application

programming

11

|

//

Set

URL

for

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

Do

not

specify

a

user

ID

or

password

for

a

CICS

or

IMS

connection.

Connecting

to

a

data

source

using

the

DataSource

interface

Using

DriverManager

to

connect

to

a

data

source

reduces

portability

because

the

application

must

identify

a

specific

JDBC

driver

class

name

and

driver

URL.

The

driver

class

name

and

driver

URL

are

specific

to

a

JDBC

vendor,

driver

implementation,

and

data

source.

If

your

applications

need

to

be

portable

among

data

sources,

you

should

use

the

DataSource

interface.

When

you

connect

to

a

data

source

using

the

DataSource

interface,

you

use

a

DataSource

object.

It

is

possible

to

create

and

use

the

DataSource

object

in

the

same

application,

as

you

do

with

the

DriverManager

interface.

Figure

4

shows

an

example

for

the

DB2

Universal

JDBC

Driver:

import

java.sql.*;

//

JDBC

base

import

javax.sql.*;

//

JDBC

2.0

standard

extension

APIs

import

com.ibm.db2.jcc.*;

//

DB2®

Universal

JDBC

Driver

�1�

//

interfaces

DB2SimpleDataSource

db2ds=new

DB2SimpleDataSource();

�2�

db2ds.setDatabaseName("db2loc1");

�3�

//

Assign

the

location

name

db2ds.setDescription("Our

Sample

Database");

//

Description

for

documentation

db2ds.setUser("john");

//

Assign

the

user

ID

db2ds.setPassword("db2");

//

Assign

the

password

Connection

con=db2ds.getConnection();

�4�

//

Create

a

Connection

object

�1�

Import

the

package

that

contains

the

implementation

of

the

DataSource

interface.

�2�

Creates

a

DB2DataSource

object.

DB2DataSource

is

one

of

the

DB2

implementations

of

the

DataSource

interface.

See

“Creating

and

deploying

DataSource

objects”

on

page

50

for

information

on

DB2’s

DataSource

implementations.

�3�

The

setDatabaseName,

setDescription,

setUser,

and

setPassword

methods

assign

attributes

to

the

DB2DataSource

object.

See

“DataSource

properties

for

the

JDBC/SQLJ

2.0

Driver

for

OS/390”

on

page

113

for

information

about

the

attributes

that

you

can

set

for

a

DB2DataSource

object

under

the

JDBC/SQLJ

2.0

Driver

for

OS/390.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

information

about

the

attributes

that

you

can

set

for

a

DB2DataSource

object

under

the

DB2

Universal

JDBC

Driver.

�4�

Establishes

a

connection

to

the

data

source

that

DB2DataSource

object

db2ds

represents.

However,

a

more

flexible

way

to

use

a

DataSource

object

is

for

your

system

administrator

to

create

and

manage

it

separately,

using

WebSphere®

or

some

other

tool.

The

program

that

creates

and

manages

a

DataSource

object

also

uses

the

Java™

Naming

and

Directory

Interface

(JNDI)

to

assign

a

logical

name

to

the

DataSource

object.

The

JDBC

application

that

uses

the

DataSource

object

can

then

refer

to

the

object

by

its

logical

name,

and

does

not

need

any

information

about

the

underlying

data

source.

In

addition,

your

system

administrator

can

modify

the

data

source

attributes,

and

you

do

not

need

to

change

your

application

program.

Figure

4.

Creating

and

using

a

DataSource

object

in

the

same

application

12

Application

Programming

Guide

and

Reference

for

Java™

|

To

learn

more

about

using

WebSphere

to

deploy

DataSource

objects,

go

to

this

URL

on

the

Web:

http://www.ibm.com/software/webservers/appserv/

To

learn

about

deploying

DataSource

objects

yourself,

see

“Creating

and

deploying

DataSource

objects”

on

page

50.

You

can

use

the

DataSource

interface

and

the

DriverManager

interface

in

the

same

application,

but

for

maximum

portability,

it

is

recommended

that

you

use

only

the

DataSource

interface

to

obtain

connections.

The

remainder

of

this

topic

explains

how

to

create

a

connection

using

a

DataSource

object,

given

that

the

system

administrator

has

already

created

the

object

and

assigned

a

logical

name

to

it.

To

obtain

a

connection

using

a

DataSource

object,

you

need

to

follow

these

steps:

1.

From

your

system

administrator,

obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

2.

Create

a

Context

object

to

use

in

the

next

step.

The

Context

interface

is

part

of

the

Java

Naming

and

Directory

Interface

(JNDI),

not

JDBC.

3.

In

your

application

program,

use

JNDI

to

get

the

DataSource

object

that

is

associated

with

the

logical

data

source

name.

4.

Use

the

DataSource.getConnection

method

to

obtain

the

connection.

You

can

use

one

of

the

following

forms

of

the

getConnection

method:

getConnection();

getConnection(String

user,

String

password);

Use

the

second

form

if

you

need

to

specify

a

user

ID

and

password

for

the

connection

that

are

different

from

the

ones

that

were

specified

when

the

DataSource

was

deployed.

Figure

5

shows

an

example

of

the

code

that

you

need

in

your

application

program

to

obtain

a

connection

using

a

DataSource

object,

given

that

the

logical

name

of

the

data

source

that

you

need

to

connect

to

is

jdbc/sampledb.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

import

java.sql.*;

import

javax.naming.*;

import

javax.sql.*;

...

Context

ctx=new

InitialContext();

�2�

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

�3�

Connection

con=ds.getConnection();

�4�

Setting

the

isolation

level

for

a

JDBC

transaction

To

set

the

isolation

level

for

a

unit

of

work

within

a

JDBC

program,

use

the

Connection.setTransactionIsolation(int

level)

method.

Table

1

on

page

14

shows

the

values

of

level

that

you

can

specify

in

the

Connection.setTransactionIsolation

method

and

their

DB2®

equivalents.

Figure

5.

Obtaining

a

connection

using

a

DataSource

object

Chapter

2.

JDBC

application

programming

13

|

|
|
|
|

Table

1.

Equivalent

JDBC

and

DB2

isolation

levels

JDBC

value

DB2

isolation

level

TRANSACTION_SERIALIZABLE

Repeatable

read

TRANSACTION_REPEATABLE_READ

Read

stability

TRANSACTION_READ_COMMITTED

Cursor

stability

TRANSACTION_READ_UNCOMMITTED

Uncommitted

read

You

can

change

the

isolation

level

only

at

the

beginning

of

a

transaction.

JDBC

connection

objects

When

you

connect

to

a

data

source

by

either

connection

method,

you

create

a

Connection

object,

which

represents

the

connection

to

the

data

source.

You

use

this

Connection

object

to

do

the

following

things:

v

Create

Statement,

PreparedStatement,

and

CallableStatement

objects

for

executing

SQL

statements.

These

are

discussed

in

“JDBC

interfaces

for

executing

SQL”

on

page

15.

v

Gather

information

about

the

data

source

to

which

you

are

connected.

This

process

is

discussed

in

“Using

DatabaseMetaData

to

learn

about

a

data

source”

on

page

41.

v

Commit

or

roll

back

transactions.

You

can

commit

transactions

manually

or

automatically.

These

operations

are

discussed

in

“Committing

or

rolling

back

JDBC

transactions.”

v

Close

the

connection

to

the

data

source.

This

operation

is

discussed

in

“Closing

a

connection

to

a

JDBC

data

source.”

Committing

or

rolling

back

JDBC

transactions

In

JDBC,

to

commit

or

roll

back

transactions

explicitly,

use

the

commit

or

rollback

methods.

For

example:

Connection

con;

...

con.commit();

If

autocommit

mode

is

on,

DB2®

performs

a

commit

operation

after

every

SQL

statement

completes.

To

determine

whether

autocommit

mode

is

on,

invoke

the

Connection.getAutoCommit

method.

To

set

autocommit

mode

on,

invoke

the

Connection.setAutoCommit(true)

method.

To

set

autocommit

mode

off,

invoke

the

Connection.setAutoCommit(false)

method.

Connections

that

participate

in

global

transactions

cannot

invoke

the

setAutoCommit(true)

method.

See

Chapter

11,

“JDBC

and

SQLJ

global

transaction

support,”

on

page

259

for

information

on

global

transactions.

Closing

a

connection

to

a

JDBC

data

source

When

you

have

finished

with

a

connection

to

a

data

source,

it

is

essential

that

you

close

the

connection

to

the

data

source.

Doing

this

releases

the

Connection

object’s

DB2®

and

JDBC

resources

immediately.

To

close

the

connection

to

the

data

source,

use

the

close

method.

For

example:

Connection

con;

...

con.close();

14

Application

Programming

Guide

and

Reference

for

Java™

||

||

||

||

||

||
|

|

If

autocommit

mode

is

not

on,

the

connection

needs

to

be

on

a

unit-of-work

boundary

before

you

close

the

connection.

JDBC

interfaces

for

executing

SQL

You

execute

SQL

statements

in

a

traditional

SQL

program

to

insert,

update,

and

delete

data

in

tables,

retrieve

data

from

the

tables,

or

call

stored

procedures.

To

perform

the

same

functions

in

a

JDBC

program,

you

invoke

methods

that

are

defined

in

the

following

interfaces:

v

The

Statement

interface

supports

all

SQL

statement

execution.

The

following

interfaces

inherit

methods

from

the

Statement

interface:

–

The

PreparedStatement

interface

supports

any

SQL

statement

containing

input

parameter

markers.

Parameter

markers

represent

input

variables.

The

PreparedStatement

interface

can

also

be

used

for

SQL

statements

with

no

parameter

markers.

With

the

DB2

Universal

JDBC

Driver,

the

PreparedStatement

interface

can

be

used

to

call

stored

procedures

that

have

input

parameters

and

no

output

parameters,

and

that

return

no

result

sets.

–

The

CallableStatement

interface

supports

the

invocation

of

a

stored

procedure.

The

CallableStatement

interface

can

be

used

to

call

stored

procedures

with

input

parameters,

output

parameters,

or

input

and

output

parameters,

or

no

parameters.

With

the

DB2

Universal

JDBC

Driver,

you

can

also

use

the

Statement

interface

to

call

stored

procedures,

but

those

stored

procedures

must

have

no

parameters.

For

the

JDBC/SQLJ

Driver

for

OS/390,

you

must

use

the

CallableStatement

interface,

even

if

the

stored

procedure

has

no

parameters.

v

The

ResultSet

interface

provides

access

to

the

results

that

a

query

generates.

The

ResultSet

interface

has

the

same

purpose

as

the

cursor

that

is

used

in

SQL

applications

in

other

languages.

For

a

complete

list

of

DB2®

support

for

JDBC

interfaces,

see

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

114.

Using

the

Statement.executeUpdate

method

to

create

and

modify

DB2

objects

You

can

use

the

Statement.executeUpdate

method

to

do

the

following

things:

v

Execute

data

definition

statements,

such

as

CREATE,

ALTER,

DROP,

GRANT,

REVOKE

v

Execute

INSERT,

UPDATE

and

DELETE

statements

that

do

not

contain

parameter

markers

v

With

the

DB2

Universal

JDBC

Driver,

execute

the

CALL

statement

to

call

stored

procedures

that

have

no

parameters

and

that

return

no

result

sets.

To

execute

these

SQL

statements,

you

need

to

perform

these

steps:

1.

Invoke

the

Connection.createStatement

method

to

create

a

Statement

object.

2.

Invoke

the

Statement.executeUpdate

method

to

perform

the

SQL

operation.

3.

Invoke

the

Statement.close

method

to

close

the

Statement

object.

For

example,

suppose

that

you

want

to

execute

this

SQL

statement:

UPDATE

EMPLOYEE

SET

PHONENO=’4657’

WHERE

EMPNO=’000010’

The

following

code

creates

Statement

object

stmt,

executes

the

UPDATE

statement,

and

returns

the

number

of

rows

that

were

updated

in

numUpd.

The

Chapter

2.

JDBC

application

programming

15

|
|

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Using

the

Statement.executeQuery

method

to

retrieve

data

from

DB2

tables

To

retrieve

data

from

a

table

using

a

SELECT

statement

with

no

parameter

markers,

you

can

use

the

Statement.executeQuery

method.

This

method

returns

a

result

table

in

a

ResultSet

object.

After

you

obtain

the

result

table,

you

need

to

use

ResultSet

methods

to

move

through

the

result

table

and

obtain

the

individual

column

values

from

each

row.

With

the

DB2

Universal

JDBC

Driver,

you

can

also

use

the

Statement.executeQuery

method

to

retrieve

a

result

set

from

a

stored

procedure

call,

if

that

stored

procedure

returns

only

one

result

set.

If

the

stored

procedure

returns

multiple

result

sets,

you

need

to

use

the

Statement.execute

method.

See

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application”

on

page

37

for

more

information.

This

topic

discusses

the

simplest

kind

of

ResultSet,

which

is

a

read-only

ResultSet

in

which

you

can

only

move

forward,

one

row

at

a

time.

The

DB2

Universal

JDBC

Driver

also

supports

updatable

and

scrollable

ResultSets.

These

are

discussed

in

“Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications”

on

page

47.

To

retrieve

rows

from

a

table

using

a

SELECT

statement

with

no

parameter

markers,

you

need

to

perform

these

steps:

1.

Invoke

the

Connection.createStatement

method

to

create

a

Statement

object.

2.

Invoke

the

Statement.executeQuery

method

to

obtain

the

result

table

from

the

SELECT

statement

in

a

ResultSet

object.

3.

In

a

loop,

position

the

cursor

using

the

next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

XXX

represents

a

data

type.

See

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

114

for

a

list

of

supported

getXXX

and

setXXX

methods.

4.

Invoke

the

ResultSet.close

method

to

close

the

ResultSet

object.

5.

Invoke

the

Statement.close

method

to

close

the

Statement

object

when

you

have

finished

using

that

object.

For

example,

the

following

code

demonstrates

how

to

retrieve

all

rows

from

the

employee

table.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Connection

con;

Statement

stmt;

int

numUpd;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

�1�

numUpd

=

stmt.executeUpdate(

"UPDATE

EMPLOYEE

SET

PHONENO=’4657’

WHERE

EMPNO=’000010’");

�2�

//

Perform

the

update

stmt.close();

//

Close

Statement

object

�3�

Figure

6.

Using

Statement.executeUpdate

16

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|

Using

the

PreparedStatement.executeUpdate

method

to

update

data

in

DB2

tables

The

Statement.executeUpdate

method

works

if

you

update

DB2®

tables

with

constant

values.

However,

updates

often

need

to

involve

passing

values

in

variables

to

DB2

tables.

To

do

that,

you

use

the

PreparedStatement.executeUpdate

method.

With

the

DB2

Universal

JDBC

Driver,

you

can

also

use

PreparedStatement.executeUpdate

to

call

stored

procedures

that

have

input

parameters

and

no

output

parameters,

and

that

return

no

result

sets.

When

you

execute

an

SQL

statement

many

times,

you

can

get

better

performance

by

creating

the

SQL

statement

as

a

PreparedStatement.

For

example,

the

following

UPDATE

statement

lets

you

update

the

employee

table

for

only

one

phone

number

and

one

employee

number:

UPDATE

EMPLOYEE

SET

PHONENO=’4657’

WHERE

EMPNO=’000010’

Suppose

that

you

want

to

generalize

the

operation

to

update

the

employee

table

for

any

set

of

phone

numbers

and

employee

numbers.

You

need

to

replace

the

constant

phone

number

and

employee

number

with

variables:

UPDATE

EMPLOYEE

SET

PHONENO=?

WHERE

EMPNO=?

Variables

of

this

form

are

called

parameter

markers.

To

execute

an

SQL

statement

with

parameter

markers,

you

need

to

perform

these

steps:

1.

Invoke

the

Connection.prepareStatement

method

to

create

a

PreparedStatement

object.

2.

Invoke

the

PreparedStatement.setXXX

methods

to

pass

values

to

the

variables.

3.

Invoke

the

PreparedStatement.executeUpdate

method

to

update

the

table

with

the

variable

values.

4.

Invoke

the

PreparedStatement.close

method

to

close

the

PreparedStatement

object

when

you

have

finished

using

that

object.

The

following

code

performs

the

previous

steps

to

update

the

phone

number

to

’4657’

for

the

employee

with

employee

number

’000010’.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

String

empNo;

Connection

con;

Statement

stmt;

ResultSet

rs;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

�1�

rs

=

stmt.executeQuery("SELECT

EMPNO

FROM

EMPLOYEE");

�2�

//

Get

the

result

table

from

the

query

while

(rs.next())

{

//

Position

the

cursor

�3�

empNo

=

rs.getString(1);

//

Retrieve

only

the

first

column

value

System.out.println("Employee

number

=

"

+

empNo);

//

Print

the

column

value

}

rs.close();

//

Close

the

ResultSet

�4�

stmt.close();

//

Close

the

Statement

�5�

Figure

7.

Using

Statement.executeQuery

Chapter

2.

JDBC

application

programming

17

You

can

also

use

the

PreparedStatement.executeUpdate

method

for

statements

that

have

no

parameter

markers.

The

steps

for

executing

a

PreparedStatement

object

with

no

parameter

markers

are

similar

to

executing

a

PreparedStatement

object

with

parameter

markers,

except

you

skip

step

2.

The

following

example

demonstrates

these

steps.

Using

the

PreparedStatement.executeQuery

method

to

retrieve

data

from

DB2

To

retrieve

data

from

a

table

using

a

SELECT

statement

with

parameter

markers,

you

use

the

PreparedStatement.executeQuery

method.

This

method

returns

a

result

table

in

a

ResultSet

object.

After

you

obtain

the

result

table,

you

need

to

use

ResultSet

methods

to

move

through

the

result

table

and

obtain

the

individual

column

values

from

each

row.

With

the

DB2

Universal

JDBC

Driver,

you

can

also

use

the

PreparedStatement.executeQuery

method

to

retrieve

a

result

set

from

a

stored

procedure

call,

if

that

stored

procedure

returns

only

one

result

set

and

has

only

input

parameters.

If

the

stored

procedure

returns

multiple

result

sets,

you

need

to

use

the

Statement.execute

method.

See

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application”

on

page

37

for

more

information.

To

retrieve

rows

from

a

table

using

a

SELECT

statement

with

parameter

markers,

you

need

to

perform

these

steps:

1.

Invoke

the

Connection.prepareStatement

method

to

create

a

PreparedStatement

object.

2.

Invoke

PreparedStatement.setXXX

methods

to

pass

values

to

the

input

parameters.

3.

Invoke

the

PreparedStatement.executeQuery

method

to

obtain

the

result

table

from

the

SELECT

statement

in

a

ResultSet

object.

Connection

con;

PreparedStatement

pstmt;

int

numUpd;

...

pstmt

=

con.prepareStatement(

"UPDATE

EMPLOYEE

SET

PHONENO=?

WHERE

EMPNO=?");

//

Create

a

PreparedStatement

object

�1�

pstmt.setString(1,"4657");

//

Assign

value

to

first

parameter

�2�

pstmt.setString(2,"000010");

//

Assign

value

to

second

parameter

numUpd

=

pstmt.executeUpdate();

//

Perform

the

update

�3�

pstmt.close();

//

Close

the

PreparedStatement

object

�4�

Figure

8.

Using

PreparedStatement.executeUpdate

for

an

SQL

statement

with

parameter

markers

Connection

con;

PreparedStatement

pstmt;

int

numUpd;

...

pstmt

=

con.prepareStatement(

"UPDATE

EMPLOYEE

SET

PHONENO=’4657’

WHERE

EMPNO=’000010’");

//

Create

a

PreparedStatement

object

�1�

numUpd

=

pstmt.executeUpdate();

//

Perform

the

update

�3�

pstmt.close();

//

Close

the

PreparedStatement

object

�4�

Figure

9.

Using

PreparedStatement.executeUpdate

for

an

SQL

statement

without

parameter

markers

18

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|
|

4.

In

a

loop,

position

the

cursor

using

the

ResultSet.next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

5.

Invoke

the

ResultSet.close

method

to

close

the

ResultSet

object.

6.

Invoke

the

PreparedStatement.close

method

to

close

the

PreparedStatement

object

when

you

have

finished

using

that

object.

For

example,

the

following

code

demonstrates

how

to

retrieve

rows

from

the

employee

table

for

a

specific

employee.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

You

can

also

use

the

PreparedStatement.executeQuery

method

for

statements

that

have

no

parameter

markers.

When

you

execute

a

query

many

times,

you

can

get

better

performance

by

creating

the

SQL

statement

as

a

PreparedStatement.

Using

CallableStatement

methods

to

call

stored

procedures

To

call

stored

procedures,

you

invoke

methods

in

the

CallableStatement

class.

The

basic

steps

are:

1.

Invoke

the

Connection.prepareCall

method

to

create

a

CallableStatement

object.

2.

Invoke

the

CallableStatement.setXXX

methods

to

pass

values

to

the

input

(IN)

parameters.

3.

Invoke

the

CallableStatement.registerOutParameter

method

to

indicate

which

parameters

are

output-only

(OUT)

parameters,

or

input

and

output

(INOUT)

parameters.

4.

Invoke

one

of

the

following

methods

to

call

the

stored

procedure:

CallableStatement.executeUpdate

Invoke

this

method

if

the

stored

procedure

does

not

return

result

sets.

CallableStatement.executeQuery

Invoke

this

method

if

the

stored

procedure

returns

one

result

set.

CallableStatement.execute

Invoke

this

method

if

the

stored

procedure

returns

multiple

result

sets.
5.

If

the

stored

procedure

returns

result

sets,

retrieve

the

result

sets.

See

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application”

on

page

37.

String

empnum,

phonenum;

Connection

con;

PreparedStatement

pstmt;

ResultSet

rs;

...

pstmt

=

con.prepareStatement(

"SELECT

EMPNO,

PHONENO

FROM

EMPLOYEE

WHERE

EMPNO=?");

//

Create

a

PreparedStatement

object

�1�

pstmt.setString(1,"000010");

//

Assign

value

to

input

parameter

�2�

rs

=

pstmt.executeQuery();

//

Get

the

result

table

from

the

query

�3�

while

(rs.next())

{

//

Position

the

cursor

�4�

empnum

=

rs.getString(1);

//

Retrieve

the

first

column

value

phonenum

=

rs.getString(2);

//

Retrieve

the

first

column

value

System.out.println("Employee

number

=

"

+

empnum

+

"Phone

number

=

"

+

phonenum);

//

Print

the

column

values

}

rs.close();

//

Close

the

ResultSet

�5�

pstmt.close();

//

Close

the

PreparedStatement

�6�

Figure

10.

Using

PreparedStatement.executeQuery

Chapter

2.

JDBC

application

programming

19

6.

Invoke

the

CallableStatement.getXXX

methods

to

retrieve

values

from

the

OUT

parameters

or

INOUT

parameters.

7.

Invoke

the

CallableStatement.close

method

to

close

the

CallableStatement

object

when

you

have

finished

using

that

object.

The

following

code

illustrates

calling

a

stored

procedure

that

has

one

input

parameter,

four

output

parameters,

and

no

returned

ResultSets.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver

As

in

all

Java™

programs,

error

handling

is

done

using

try/catch

blocks.

Methods

throw

exceptions

when

an

error

occurs,

and

the

code

in

the

catch

block

handles

those

exceptions.

JDBC

provides

the

SQLException

class

for

handling

errors.

All

JDBC

methods

throw

an

instance

of

SQLException

when

an

error

occurs

during

their

execution.

According

to

the

JDBC

specification,

an

SQLException

object

contains

the

following

information:

v

A

String

object

that

contains

a

description

of

the

error,

or

null

v

A

String

object

that

contains

the

SQLSTATE,

or

null

v

An

int

value

that

contains

an

error

code

v

A

pointer

to

the

next

SQLException,

or

null

The

DB2

Universal

JDBC

Driver

provides

a

com.ibm.db2.jcc.DB2Diagnosable

interface

that

extends

the

SQLException

class.

The

DB2Diagnosable

interface

gives

you

more

information

about

errors

that

occur

when

DB2®

is

accessed.

If

the

JDBC

driver

detects

an

error,

DB2Diagnosable

gives

you

the

same

information

as

the

standard

SQLException

class.

However,

if

DB2

detects

the

error,

DB2Diagnosable

adds

the

following

methods,

which

give

you

additional

information

about

the

error:

getSqlca

Returns

an

DB2Sqlca

object

with

the

following

information:

int

ifcaret;

int

ifcareas;

int

xsbytes;

String

errbuff;

Connection

con;

CallableStatement

cstmt;

ResultSet

rs;

...

cstmt

=

con.prepareCall("CALL

DSN8.DSN8ED2(?,?,?,?,?)");

�1�

//

Create

a

CallableStatement

object

cstmt.setString

(1,

"DISPLAY

THREAD(*)");

�2�

//

Set

input

parameter

(DB2

command)

cstmt.registerOutParameter

(2,

Types.INTEGER);

�3�

//

Register

output

parameters

cstmt.registerOutParameter

(3,

Types.INTEGER);

cstmt.registerOutParameter

(4,

Types.INTEGER);

cstmt.registerOutParameter

(5,

Types.VARCHAR);

cstmt.executeUpdate();

//

Call

the

stored

procedure

�4�

ifcaret

=

cstmt.getInt(2);

//

Get

the

output

parameter

values

�6�

ifcareas

=

cstmt.getInt(3);

xsbytes

=

cstmt.getInt(4);

errbuff

=

cstmt.getString(5);

cstmt.close();

�7�

Figure

11.

Using

CallableStatement

methods

for

a

stored

procedure

call

with

parameter

markers

20

Application

Programming

Guide

and

Reference

for

Java™

v

An

SQL

error

code

v

The

SQLERRMC

values

v

The

SQLERRP

value

v

The

SQLERRD

values

v

The

SQLWARN

values

v

The

SQLSTATE

getThrowable

Returns

a

java.lang.Throwable

object

that

caused

the

SQLException,

or

null,

if

no

such

object

exists.

printTrace

Prints

diagnostic

information.

The

basic

steps

for

handling

an

SQLException

in

a

JDBC

program

that

runs

under

the

DB2

Universal

JDBC

Driver

are:

1.

Give

the

program

access

to

the

com.ibm.db2.jcc.DB2Diagnosable

interface

and

the

com.ibm.db2.jcc.DB2Sqlca

class.

You

can

fully

qualify

all

references

to

them,

or

you

can

import

them:

import

com.ibm.db2.jcc.DB2Diagnosable;

import

com.ibm.db2.jcc.DB2Sqlca;

2.

Put

code

that

can

generate

an

SQLException

in

a

try

block.

3.

In

the

catch

block,

perform

the

following

steps

in

a

loop:

a.

Test

whether

you

have

retrieved

the

last

SQLException.

If

not,

continue

to

the

next

step.

b.

Check

whether

any

DB2-only

information

exists

by

testing

for

the

existence

of

a

DB2Diagnosable

object.

If

the

object

exists:

1)

Optional:

Invoke

the

DB2Diagnosable.printTrace

method

to

write

all

SQLException

information

to

a

java.io.PrintWriter

object.

2)

Invoke

the

DB2Diagnosable.getThrowable

method

to

determine

whether

an

underlying

java.lang.Throwable

caused

the

SQLException.

3)

Invoke

the

DB2Diagnosable.getSqlca

method

to

retrieve

the

DB2Sqlca

object.

4)

Invoke

the

DB2Sqlca.getSqlCode

method

to

retrieve

an

SQL

error

code

value.

5)

Invoke

the

DB2Sqlca.getSqlErrmc

method

to

retrieve

a

string

that

contains

all

SQLERRMC

values,

or

invoke

the

DB2Sqlca.getSqlErrmcTokens

method

to

retrieve

the

SQLERRMC

values

in

an

array.

6)

Invoke

the

DB2Sqlca.getSqlErrp

method

to

retrieve

the

SQLERRP

value.

7)

Invoke

the

DB2Sqlca.getSqlErrd

method

to

retrieve

the

SQLERRD

values

in

an

array.

8)

Invoke

the

DB2Sqlca.getSqlWarn

method

to

retrieve

the

SQLWARN

values

in

an

array.

9)

Invoke

the

DB2Sqlca.getSqlState

method

to

retrieve

the

SQLSTATE

value.

10)

Invoke

the

DB2Sqlca.getMessage

method

to

retrieve

error

message

text

from

the

database

server.

c.

Invoke

the

SQLException.getNextException

method

to

retrieve

the

next

SQLException.

Chapter

2.

JDBC

application

programming

21

The

following

code

demonstrates

how

to

obtain

information

from

the

DB2

version

of

an

SQLException

that

is

provided

with

the

DB2

Universal

JDBC

Driver.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

import

java.sql.*;

//

Import

JDBC

API

package

import

com.ibm.db2.jcc.DB2Diagnosable;

//

Import

packages

for

DB2

�1�

import

com.ibm.db2.jcc.DB2Sqlca;

//

SQLException

support

java.io.PrintWriter

printWriter;

//

For

dumping

all

SQLException

//

information

...

try

{

�2�

//

Code

that

could

generate

SQLExceptions

...

}

catch(SQLException

sqle)

{

while(sqle

!=

null)

{

//

Check

whether

there

are

more

�3a�

//

SQLExceptions

to

process

//=====>

Optional

DB2-only

error

processing

if

(sqle

instanceof

DB2Diagnosable)

{

�3b�

//

Check

if

DB2-only

information

exists

com.ibm.db2.jcc.DB2Diagnosable

diagnosable

=

(com.ibm.db2.jcc.DB2Diagnosable)sqle;

diagnosable.printTrace

(printWriter,

"");

�3b1�

java.lang.Throwable

throwable

=

diagnosable.getThrowable();

�3b2�

if

(throwable

!=

null)

{

//

Extract

java.lang.Throwable

information

//

such

as

message

or

stack

trace.

...

}

DB2Sqlca

sqlca

=

diagnosable.getSqlca();

�3b3�

//

Get

DB2Sqlca

object

if

(sqlca

!=

null)

{

//

Check

that

DB2Sqlca

is

not

null

int

sqlCode

=

sqlca.getSqlCode();

//

Get

the

SQL

error

code

�3b4�

String

sqlErrmc

=

sqlca.getSqlErrmc();

�3b5�

//

Get

the

entire

SQLERRMC

String[]

sqlErrmcTokens

=

sqlca.getSqlErrmcTokens();

//

You

can

also

retrieve

the

//

individual

SQLERRMC

tokens

String

sqlErrp

=

sqlca.getSqlErrp();

�3b6�

//

Get

the

SQLERRP

int[]

sqlErrd

=

sqlca.getSqlErrd();

�3b7�

//

Get

SQLERRD

fields

char[]

sqlWarn

=

sqlca.getSqlWarn();

�3b8�

//

Get

SQLWARN

fields

String

sqlState

=

sqlca.getSqlState();

�3b9�

//

Get

SQLSTATE

String

errMessage

=

sqlca.getMessage();

�3b10�

//

Get

error

message

System.err.println

("Server

error

message:

"

+

errMessage);

System.err.println

("---------------

SQLCA

---------------");

System.err.println

("Error

code:

"

+

sqlCode);

System.err.println

("SQLERRMC:

"

+

sqlErrmc);

for

(int

i=0;

i<

sqlErrmcTokens.length;

i++)

{

System.err.println

("

token

"

+

i

+

":

"

+

sqlErrmcTokens[i]);

}

Figure

12.

Processing

an

SQLException

under

the

DB2

Universal

JDBC

Driver

(Part

1

of

2)

22

Application

Programming

Guide

and

Reference

for

Java™

Handling

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390

As

in

all

Java

programs,

error

handling

is

done

using

try/catch

blocks.

Methods

throw

exceptions

when

an

error

occurs,

and

the

code

in

the

catch

block

handles

those

exceptions.

JDBC

provides

the

SQLException

class

for

handling

errors.

All

JDBC

methods

throw

an

instance

of

SQLException

when

an

error

occurs

during

their

execution.

According

to

the

JDBC

specification,

an

SQLException

object

contains

the

following

information:

v

A

String

object

that

contains

a

description

of

the

error,

or

null

v

A

String

object

that

contains

the

SQLSTATE,

or

null

v

An

int

value

that

contains

an

error

code

v

A

pointer

to

the

next

SQLException,

or

null

The

JDBC/SQLJ

Driver

for

OS/390

provides

a

com.ibm.db2.jcc.DB2Diagnosable

interface

that

extends

the

SQLException

class.

The

DB2Diagnosable

interface

gives

you

more

information

about

errors

that

occur

when

DB2®

is

accessed.

If

the

JDBC

driver

detects

an

error,

DB2Diagnosable

gives

you

the

same

information

as

the

standard

SQLException

class.

However,

if

DB2

detects

the

error,

DB2Diagnosable

adds

the

following

method,

which

give

you

additional

information

about

the

error:

getSqlca

Returns

an

DB2Sqlca

object

with

the

following

information:

v

An

SQL

error

code

v

The

SQLERRMC

values

v

The

SQLERRP

value

v

The

SQLERRD

values

v

The

SQLWARN

values

v

The

SQLSTATE

System.err.println

(

"SQLERRP:

"

+

sqlErrp

);

System.err.println

(

"SQLERRD(1):

"

+

sqlErrd[0]

+

"\n"

+

"SQLERRD(2):

"

+

sqlErrd[1]

+

"\n"

+

"SQLERRD(3):

"

+

sqlErrd[2]

+

"\n"

+

"SQLERRD(4):

"

+

sqlErrd[3]

+

"\n"

+

"SQLERRD(5):

"

+

sqlErrd[4]

+

"\n"

+

"SQLERRD(6):

"

+

sqlErrd[5]

);

System.err.println

(

"SQLWARN1:

"

+

sqlWarn[0]

+

"\n"

+

"SQLWARN2:

"

+

sqlWarn[1]

+

"\n"

+

"SQLWARN3:

"

+

sqlWarn[2]

+

"\n"

+

"SQLWARN4:

"

+

sqlWarn[3]

+

"\n"

+

"SQLWARN5:

"

+

sqlWarn[4]

+

"\n"

+

"SQLWARN6:

"

+

sqlWarn[5]

+

"\n"

+

"SQLWARN7:

"

+

sqlWarn[6]

+

"\n"

+

"SQLWARN8:

"

+

sqlWarn[7]

+

"\n"

+

"SQLWARN9:

"

+

sqlWarn[8]

+

"\n"

+

"SQLWARNA:

"

+

sqlWarn[9]

);

System.err.println

("SQLSTATE:

"

+

sqlState);

//

portion

of

SQLException

}

sqle=sqle.getNextException();

//

Retrieve

next

SQLException

�3c�

}

}

Figure

12.

Processing

an

SQLException

under

the

DB2

Universal

JDBC

Driver

(Part

2

of

2)

Chapter

2.

JDBC

application

programming

23

The

basic

steps

for

handling

an

SQLException

in

a

JDBC

program

that

runs

under

the

JDBC/SQLJ

Driver

for

OS/390

are:

1.

Give

the

program

access

to

the

com.ibm.db2.jcc.DB2Diagnosable

interface

and

the

com.ibm.db2.jcc.DB2Sqlca

class.

You

can

do

that

by

importing

them:

com.ibm.db2.jcc.DB2Diagnosable

com.ibm.db2.jcc.DB2Sqlca

2.

Put

code

that

can

generate

an

SQLException

in

a

try

block.

3.

In

the

catch

block,

perform

the

following

steps

in

a

loop:

a.

Test

whether

you

have

retrieved

the

last

SQLException.

If

not,

continue

to

the

next

step.

b.

Invoke

the

SQLException.getMessage

method

to

retrieve

the

error

description.

c.

Invoke

the

SQLException.getSQLState

method

to

retrieve

the

SQLSTATE

value.

d.

Invoke

the

SQLException.getErrorCode

method

to

retrieve

an

SQL

error

code

value.

e.

Check

whether

the

current

SQLException

is

an

instance

of

a

DB2Diagnosable

object.

If

so:

1)

Invoke

the

DB2Diagnosable.getSqlca

method

to

retrieve

the

DB2Sqlca

object.

2)

Invoke

the

DB2Sqlca.getSqlCode

method

to

retrieve

an

SQL

error

code

value.

3)

Invoke

the

DB2Sqlca.getSqlErrmc

method

to

retrieve

a

string

that

contains

all

SQLERRMC

values,

or

invoke

the

DB2Sqlca.getSqlErrmcTokens

method

to

retrieve

the

SQLERRMC

values

in

an

array.

4)

Invoke

the

DB2Sqlca.getSqlErrp

method

to

retrieve

the

SQLERRP

value.

5)

Invoke

the

DB2Sqlca.getSqlErrd

method

to

retrieve

the

SQLERRD

values

in

an

array.

6)

Invoke

the

DB2Sqlca.getSqlWarn

method

to

retrieve

the

SQLWARN

values

in

an

array.

7)

Invoke

the

DB2Sqlca.getSqlState

method

to

retrieve

the

SQLSTATE

value.

f.

Invoke

the

SQLException.getNextException

method

to

retrieve

the

next

SQLException.

The

following

code

illustrates

a

catch

block

that

uses

the

DB2

version

of

SQLException

that

is

provided

with

the

JDBC/SQLJ

Driver

for

OS/390.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

24

Application

Programming

Guide

and

Reference

for

Java™

import

java.sql.*;

//

Import

JDBC

API

package

import

com.ibm.db2.jcc.DB2Diagnosable;

//

Import

packages

for

DB2

�1�

import

com.ibm.db2.jcc.DB2Sqlca;

//

SQLException

support

...

try

{

�2�

//

Code

that

could

generate

SQLExceptions

...

}

catch(SQLException

sqle)

{

while(sqle

!=

null)

{

//

Check

whether

there

are

more

�3a�

//

SQLExceptions

to

process

System.out.println

("SQLException:

"

+

sqle

+

".

Message="

+

sqle.getMessage()

+

�3b�

".

SQLSTATE="

+

sqle.getSQLState()

+

�3c�

"

Error

code="

+

sqle.getErrorCode());

�3d�

//

Print

out

the

standard

SQLException

sqle.printStackTrace();

//=====>

Optional

DB2-only

error

processing

if

(sqle

instanceof

DB2Diagnosable)

{

�3e�

//

Check

if

DB2-only

information

exists

com.ibm.db2.jcc.DB2Diagnosable

diagnosable

=

DB2Sqlca

sqlca

=

diagnosable.getSqlca();

�3e1�

//

Get

DB2Sqlca

object

if

(sqlca

!=

null)

{

//

Check

that

DB2Sqlca

is

not

null

int

sqlCode

=

sqlca.getSqlCode();

//

Get

the

SQL

error

code

�3e2�

String

sqlErrmc

=

sqlca.getSqlErrmc();

�3e3�

//

Get

the

entire

SQLERRMC

String[]

sqlErrmcTokens

=

sqlca.getSqlErrmcTokens();

//

You

can

also

retrieve

the

//

individual

SQLERRMC

tokens

String

sqlErrp

=

sqlca.getSqlErrp();

�3e4�

//

Get

the

SQLERRP

int[]

sqlErrd

=

sqlca.getSqlErrd();

�3e5�

//

Get

SQLERRD

fields

char[]

sqlWarn

=

sqlca.getSqlWarn();

�3e6�

//

Get

SQLWARN

fields

String

sqlState

=

sqlca.getSqlState();

�3e7�

//

Get

SQLSTATE

System.err.println

("---------------

SQLCA

---------------");

System.err.println

("Error

code:

"

+

sqlCode);

System.err.println

("SQLERRMC:

"

+

sqlErrmc);

for

(int

i=0;

i<

sqlErrmcTokens.length;

i++)

{

System.err.println

("

token

"

+

i

+

":

"

+

sqlErrmcTokens[i]);

}

Figure

13.

Processing

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390

(Part

1

of

2)

Chapter

2.

JDBC

application

programming

25

Internal

errors

in

the

JDBC/SQLJ

Driver

for

OS/390:

Internal

errors

in

the

DB2

JDBC

drivers

generate

SQLException

objects

for

which

the

value

that

is

returned

by

SQLException.getSQLState

is

FFFFF,

and

the

value

that

is

returned

by

SQLException.getErrorCode

is

a

value

that

is

not

documented

in

DB2

Messages

and

Codes.

These

error

code

values

are

not

DB2

SQL

error

codes

but

are

values

that

are

generated

by

the

JDBC

driver.

If

SQLException.getSQLState

returns

FFFFF,

contact

your

IBM

service

representative.

Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver

Unlike

SQL

errors,

SQL

warnings

do

not

cause

JDBC

methods

to

throw

exceptions.

Instead,

the

Connection,

Statement,

PreparedStatement,

CallableStatement,

and

ResultSet

classes

contain

getWarnings

methods,

which

you

need

to

invoke

after

you

execute

SQL

statements

to

determine

whether

any

SQL

warnings

were

generated.

Calling

getWarnings

retrieves

an

SQLWarning

object.

A

generic

SQLWarning

object

contains

the

following

information:

v

A

String

object

that

contains

a

description

of

the

warning,

or

null

v

A

String

object

that

contains

the

SQLSTATE,

or

null

v

An

int

value

that

contains

an

error

code

v

A

pointer

to

the

next

SQLWarning,

or

null

Under

the

DB2

Universal

JDBC

Driver,

like

an

SQLException

object,

an

SQLWarning

object

can

also

contain

DB2®-specific

information.

The

DB2-specific

information

for

an

SQLWarning

object

is

the

same

as

the

DB2-specific

information

for

an

SQLException

object.

The

basic

steps

for

retrieving

SQL

warning

information

are:

1.

Immediately

after

invoking

a

method

that

executes

an

SQL

statement,

invoke

the

getWarnings

method

to

retrieve

an

SQLWarning

object.

2.

Perform

the

following

steps

in

a

loop:

a.

Test

whether

the

SQLWarning

object

is

null.

If

not,

continue

to

the

next

step.

System.err.println

(

"SQLERRP:

"

+

sqlErrp

);

System.err.println

(

"SQLERRD(1):

"

+

sqlErrd[0]

+

"\n"

+

"SQLERRD(2):

"

+

sqlErrd[1]

+

"\n"

+

"SQLERRD(3):

"

+

sqlErrd[2]

+

"\n"

+

"SQLERRD(4):

"

+

sqlErrd[3]

+

"\n"

+

"SQLERRD(5):

"

+

sqlErrd[4]

+

"\n"

+

"SQLERRD(6):

"

+

sqlErrd[5]

);

System.err.println

(

"SQLWARN1:

"

+

sqlWarn[0]

+

"\n"

+

"SQLWARN2:

"

+

sqlWarn[1]

+

"\n"

+

"SQLWARN3:

"

+

sqlWarn[2]

+

"\n"

+

"SQLWARN4:

"

+

sqlWarn[3]

+

"\n"

+

"SQLWARN5:

"

+

sqlWarn[4]

+

"\n"

+

"SQLWARN6:

"

+

sqlWarn[5]

+

"\n"

+

"SQLWARN7:

"

+

sqlWarn[6]

+

"\n"

+

"SQLWARN8:

"

+

sqlWarn[7]

+

"\n"

+

"SQLWARN9:

"

+

sqlWarn[8]

+

"\n"

+

"SQLWARNA:

"

+

sqlWarn[9]

);

System.err.println

("SQLSTATE:

"

+

sqlState);

//

portion

of

SQLException

}

sqle=sqle.getNextException();

//

Retrieve

next

SQLException

�3f�

}

}

Figure

13.

Processing

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390

(Part

2

of

2)

26

Application

Programming

Guide

and

Reference

for

Java™

b.

Invoke

the

SQLWarning.getMessage

method

to

retrieve

the

warning

description.

c.

Invoke

the

SQLWarning.getSQLState

method

to

retrieve

the

SQLSTATE

value.

d.

Invoke

the

SQLWarning.getErrorCode

method

to

retrieve

the

error

code

value.

e.

If

you

want

DB2-specific

warning

information,

perform

the

same

steps

that

you

perform

to

get

DB2-specific

information

for

an

SQLException.

f.

Invoke

the

SQLWarning.getNextWarning

method

to

retrieve

the

next

SQLWarning.

The

following

code

illustrates

how

to

obtain

generic

SQLWarning

information.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

For

an

example

of

obtaining

DB2-specific

error

information,

see

“Handling

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

23.

Handling

an

SQLWarning

under

the

JDBC/SQLJ

Driver

for

OS/390

Handling

of

an

SQL

warning

under

the

JDBC/SQLJ

Driver

for

OS/390

is

the

same

as

handling

an

SQL

warning

under

the

DB2

Universal

JDBC

Driver.

See

“Handling

an

SQLWarning

under

the

DB2

Universal

JDBC

Driver”

on

page

26.

Advanced

JDBC

application

programming

concepts

The

following

topics

contain

more

advanced

information

about

writing

JDBC

applications:

v

“LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver”

on

page

28

v

“Using

large

objects

(LOBs)

in

JDBC

applications

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

29

v

“Java

data

types

for

retrieving

or

updating

LOB

column

data

in

JDBC

applications”

on

page

30

v

“ROWIDs

in

JDBC

with

the

DB2

Universal

JDBC

Driver”

on

page

32

v

“Using

ROWIDs

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

33

v

“Using

graphic

string

constants

in

JDBC

applications”

on

page

33

v

“Distinct

types

in

JDBC

applications”

on

page

33

v

“Savepoints

in

JDBC

applications”

on

page

34

Connection

con;

Statement

stmt;

ResultSet

rs;

SQLWarning

sqlwarn;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

rs

=

stmt.executeQuery("SELECT

*

FROM

EMPLOYEE");

//

Get

the

result

table

from

the

query

sqlwarn

=

stmt.getWarnings();

//

Get

any

warnings

generated

�1�

while

(sqlwarn

!=

null)

{

//

While

there

are

warnings,

get

and

�2a�

//

print

warning

information

System.out.println

("Warning

description:

"

+

sqlwarn.getMessage());

�2b�

System.out.println

("SQLSTATE:

"

+

sqlwarn.getSQLState());

�2c�

System.out.println

("Error

code:

"

+

sqlwarn.getErrorCode());

�2d�

sqlwarn=sqlwarn.getNextWarning();

//

Get

next

SQLWarning

�2f�

}

Figure

14.

Processing

an

SQLWarning

Chapter

2.

JDBC

application

programming

27

v

“Retrieving

identity

column

values

in

JDBC

applications”

on

page

35

v

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application”

on

page

37

v

“Using

ResultSetMetaData

to

learn

about

a

ResultSet”

on

page

40

v

“Using

DatabaseMetaData

to

learn

about

a

data

source”

on

page

41

v

“Using

ParameterMetaData

to

learn

about

parameters

in

a

PreparedStatement”

on

page

42

v

“Making

batch

updates

in

JDBC

applications”

on

page

43

v

“Retrieving

information

from

a

BatchUpdateException”

on

page

45

v

“Characteristics

of

a

JDBC

ResultSet

under

the

DB2

Universal

JDBC

Driver”

on

page

46

v

“Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications”

on

page

47

v

“Creating

and

deploying

DataSource

objects”

on

page

50

LOBs

in

JDBC

applications

with

the

DB2

Universal

JDBC

Driver

The

DB2

Universal

JDBC

Driver

includes

all

of

the

LOB

support

in

the

JDBC

2.0

specification.

This

driver

also

includes

support

for

LOBs

in

additional

methods

and

for

additional

data

types.

CLOB

data

is

always

sent

to

the

database

server

as

a

Unicode

stream.

The

database

server

converts

the

data

to

the

target

code

page.

LOB

locator

support:

The

DB2

Universal

JDBC

Driver

can

use

LOB

locators

to

retrieve

data

in

LOB

columns.

To

cause

JDBC

to

use

LOB

locators

to

retrieve

data

from

LOB

columns,

you

need

to

set

the

fullyMaterializeLobData

property

to

false.

Properties

are

discussed

in

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106.

fullyMaterializeLobData

has

no

effect

on

stored

procedure

parameters

or

LOBs

that

are

fetched

using

scrollable

cursors.

When

you

fetch

data

from

a

DB2

UDB

server

in

the

OS/390®

or

z/OS™

environment

using

scrollable

cursors,

JDBC

always

uses

LOB

locators

to

retrieve

data

from

LOB

columns.

As

in

any

other

language,

a

LOB

locator

in

a

Java

application

is

associated

with

only

one

DB2

subsystem.

You

cannot

use

a

single

LOB

locator

to

move

data

between

two

different

DB2

subsystems.

To

move

LOB

data

between

two

DB2

subsystems,

you

need

to

materialize

the

LOB

data

when

you

retrieve

it

from

a

table

in

the

first

DB2

subsystem

and

then

insert

that

data

into

the

table

in

the

second

DB2

subsystem.

Additional

methods

supported

by

the

DB2

Universal

JDBC

Driver:

In

addition

to

the

methods

in

the

JDBC

specification,

the

DB2

Universal

JDBC

Driver

includes

LOB

support

in

the

following

methods:

v

You

can

specify

a

BLOB

column

as

an

argument

of

the

following

ResultSet

methods

to

retrieve

data

from

a

BLOB

column:

–

getBinaryStream

–

getBytes

v

You

can

specify

a

CLOB

column

as

an

argument

of

the

following

ResultSet

methods

to

retrieve

data

from

a

CLOB

column:

–

getAsciiStream

–

getCharacterStream

–

getString

–

getUnicodeStream

28

Application

Programming

Guide

and

Reference

for

Java™

v

You

can

use

the

following

PreparedStatement

methods

to

set

the

values

for

parameters

that

correspond

to

BLOB

columns:

–

setBytes

–

setBinaryStream

v

You

can

use

the

following

PreparedStatement

methods

to

set

the

values

for

parameters

that

correspond

to

CLOB

columns:

–

setString

–

setAsciiStream

–

setUnicodeStream

–

setCharacterStream

v

You

can

retrieve

the

value

of

a

JDBC

CLOB

parameter

using

the

following

CallableStatement

method:

–

getString

Restriction

on

using

LOBs

with

the

DB2

Universal

JDBC

Driver:

If

you

are

using

Universal

Driver

type

2

connectivity,

you

cannot

call

a

stored

procedure

that

has

DBCLOB

OUT

or

INOUT

parameters.

Using

large

objects

(LOBs)

in

JDBC

applications

with

the

JDBC/SQLJ

Driver

for

OS/390

The

JDBC/SQLJ

Driver

for

OS/390

includes

all

of

the

LOB

support

in

the

JDBC

2.0

specification.

See

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

114

for

a

list

of

supported

methods.

The

JDBC/SQLJ

Driver

for

OS/390

also

includes

support

for

LOBs

in

additional

methods

and

for

additional

data

types.

LOB

locator

support:

The

JDBC/SQLJ

Driver

for

OS/390

does

not

use

LOB

locators

for

its

support

of

LOB

data

types.

This

means

that

when

you

you

use

the

JDBC/SQLJ

Driver

for

OS/390,

and

you

retrieve

data

from

a

LOB

column,

you

retrieve

the

entire

LOB.

If

you

retrieve

very

large

LOBs

in

your

JDBC

applications,

you

might

need

to

increase

the

size

of

the

JDBC

application

address

space.

Additional

methods

supported

by

the

JDBC/SQLJ

Driver

for

OS/390:

In

addition

to

the

methods

in

the

JDBC

2.0

specification,

the

JDBC/SQLJ

2.0

Driver

for

OS/390

includes

LOB

support

in

the

following

methods:

v

You

can

specify

a

BLOB

column

as

an

argument

of

the

following

ResultSet

methods

to

retrieve

data

from

a

BLOB

column:

–

getAsciiStream

–

getBinaryStream

–

getBytes

v

You

can

specify

a

CLOB

column

as

an

argument

of

the

following

ResultSet

methods

to

retrieve

data

from

a

CLOB

column:

–

getAsciiStream

–

getCharacterStream

–

getString

–

getUnicodeStream

v

You

can

use

the

following

PreparedStatement

methods

to

set

the

values

for

parameters

that

correspond

to

BLOB

columns:

–

setBinaryStream

–

setBytes

v

You

can

use

the

following

PreparedStatement

methods

to

set

the

values

for

parameters

that

correspond

to

CLOB

columns:

–

setAsciiStream

–

setCharacterStream

–

setString

Chapter

2.

JDBC

application

programming

29

|
|

|
|
|
|

|
|
|

|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

–

setUnicodeStream

v

You

can

retrieve

the

value

of

a

JDBC

CLOB

parameter

using

the

following

CallableStatement

method:

–

getString

Using

DBCLOBs

with

the

JDBC/SQLJ

2.0

Driver

for

OS/390:

You

can

retrieve

data

from

or

store

data

in

DBCLOB

columns.

However,

because

Java

and

JDBC

do

not

have

an

equivalent

to

the

DB2

DBCLOB

data

type,

your

JDBC

programs

need

to

use

methods

that

are

defined

for

Clob

data

to

pass

data

to

or

from

DBCLOB

columns.

Restrictions

on

using

LOBs

with

the

JDBC/SQLJ

2.0

Driver

for

OS/390:

v

You

cannot

call

a

stored

procedure

that

has

LOB

locator

parameters

or

DBCLOB

parameters.

v

Inherited

PreparedStatement

methods

setAsciiStream

and

setUnicodeStream

cannot

be

used

to

set

CLOB

input

parameters

in

a

CallableStatement.

Inherited

PreparedStatement

methods

setBinaryStream

and

setBytes

cannot

be

used

to

set

BLOB

input

parameters

in

a

CallableStatement.

Method

getBytes

cannot

be

used

to

retrieve

BLOB

output

parameters

in

a

CallableStatement.

v

For

the

JDBC/SQLJ

2.0

Driver

for

OS/390,

the

maximum

size

for

a

LOB

parameter

of

type

OUT

or

INOUT

in

a

CallableStatement

is

1MB.

IN

parameters

can

be

longer.

Java

data

types

for

retrieving

or

updating

LOB

column

data

in

JDBC

applications

For

Universal

Driver

type

2

connectivity

to

DB2

UDB

for

z/OS,

when

the

JDBC

driver

processes

a

CallableStatement.setXXX

call

for

a

stored

procedure

input

parameter,

or

a

CallableStatement.registerOutParameter

call

for

a

stored

procedure

output

parameter,

the

driver

cannot

determine

the

parameter

data

types.

When

the

deferPrepares

property

is

set

to

true,

and

the

DB2

Universal

JDBC

Driver

processes

a

PreparedStatement.setXXX

call,

the

driver

might

need

to

do

extra

processing

to

determine

data

types.

This

extra

processing

can

impact

performance.

When

the

JDBC

driver

cannot

immediately

determine

the

data

type

of

a

parameter

that

is

used

with

a

LOB

column,

you

need

to

choose

a

parameter

data

type

that

is

compatible

with

the

LOB

data

type.

Input

parameters

for

BLOB

columns:

For

input

parameters

for

BLOB

columns,

or

input/output

parameters

that

are

used

for

input

to

BLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

a

java.sql.Blob

input

variable,

which

is

an

exact

match

for

a

BLOB

column:

cstmt.setBlob(parmIndex,

blobData);

v

Use

a

CallableStatement.setObject

call

that

specifies

that

the

target

data

type

is

BLOB:

byte[]

byteData

=

{(byte)0x1a,

(byte)0x2b,

(byte)0x3c};

cstmt.setObject(parmInd,

byteData,

java.sql.Types.BLOB);

v

Use

an

input

parameter

of

type

of

java.io.ByteArrayInputStream

with

a

CallableStatement.setBinaryStream

call.

A

java.io.ByteArrayInputStream

object

is

compatible

with

a

BLOB

data

type.

For

this

call,

you

need

to

specify

the

exact

length

of

the

input

data:

30

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|

|

|
|
|
|

|
|
|

|
|
|

|

|
|

|

|

|
|

|
|

|
|
|
|

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream(byteData);

int

numBytes

=

byteData.length;

cstmt.setBinaryStream(parmIndex,

byteStream,

numBytes);

Output

parameters

for

BLOB

columns:

For

output

parameters

for

BLOB

columns,

or

input/output

parameters

that

are

used

for

output

from

BLOB

columns,

you

can

use

the

following

technique:

v

Use

the

CallableStatement.registerOutParameter

call

to

specify

that

an

output

parameter

is

of

type

BLOB.

Then

you

can

retrieve

the

parameter

value

into

any

variable

that

has

a

data

type

that

is

compatible

with

a

BLOB

data

type.

For

example,

the

following

code

lets

you

retrieve

a

BLOB

value

into

a

byte[]

variable:

cstmt.registerOutParameter(parmIndex,

java.sql.Types.BLOB);

cstmt.execute();

byte[]

byteData

=

cstmt.getBytes(parmIndex);

Input

parameters

for

CLOB

columns:

For

input

parameters

for

CLOB

columns,

or

input/output

parameters

that

are

used

for

input

to

CLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

a

java.sql.Clob

input

variable,

which

is

an

exact

match

for

a

CLOB

column:

cstmt.setClob(parmIndex,

clobData);

v

Use

a

CallableStatement.setObject

call

that

specifies

that

the

target

data

type

is

CLOB:

String

charData

=

"CharacterString";

cstmt.setObject(parmInd,

charData,

java.sql.Types.CLOB);

v

Use

one

of

the

following

types

of

stream

input

parameters:

–

A

java.io.StringReader

input

parameter

with

a

cstmt.setCharacterStream

call:

java.io.StringReader

reader

=

new

java.io.StringReader(charData);

cstmt.setCharacterStream(parmIndex,

reader,

charData.length);

–

A

java.io.ByteArrayInputStream

parameter

with

a

cstmt.setAsciiStream

call,

for

ASCII

data:

byte[]

charDataBytes

=

charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream

(charDataBytes);

cstmt.setAsciiStream(parmIndex,

byteStream,

charDataBytes.length);

For

these

calls,

you

need

to

specify

the

exact

length

of

the

input

data.

v

Use

a

String

input

parameter

with

a

cstmt.setString

call:

cstmt.setString(charData);

If

the

length

of

the

data

is

greater

than

32KB,

the

JDBC

driver

assigns

the

CLOB

data

type

to

the

input

data.

v

Use

a

String

input

parameter

with

a

cstmt.setObject

call,

and

specify

the

target

data

type

as

VARCHAR

or

LONGVARCHAR:

cstmt.setObject(parmIndex,

charData,

java.sql.Types.VARCHAR);

If

the

length

of

the

data

is

greater

than

32KB,

the

JDBC

driver

assigns

the

CLOB

data

type

to

the

input

data.

Output

parameters

for

CLOB

columns:

Chapter

2.

JDBC

application

programming

31

|
|
|
|

|

|
|

|
|
|
|

|
|
|

|

|
|

|

|

|
|

|
|

|

|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|
|

|

|
|

|

For

output

parameters

for

CLOB

columns,

or

input/output

parameters

that

are

used

for

output

from

CLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

the

CallableStatement.registerOutParameter

call

to

specify

that

an

output

parameter

is

of

type

CLOB.

Then

you

can

retrieve

the

parameter

value

into

any

variable

that

has

a

data

type

that

is

compatible

with

a

CLOB

data

type.

For

example,

the

following

code

lets

you

retrieve

a

CLOB

value

into

a

String

variable:

cstmt.registerOutParameter(parmIndex,

java.sql.Types.CLOB);

cstmt.execute();

String

charData

=

cstmt.getString(parmIndex);

v

Use

the

CallableStatement.registerOutParameter

call

to

specify

that

an

output

parameter

is

of

type

VARCHAR

or

LONGVARCHAR:

cstmt.registerOutParameter(parmIndex,

java.sql.Types.VARCHAR);

cstmt.execute();

String

charData

=

cstmt.getString(parmIndex);

This

technique

should

be

used

only

if

you

know

that

the

length

of

the

retrieved

data

is

less

than

or

equal

to

32KB.

Otherwise,

the

data

is

truncated.

ROWIDs

in

JDBC

with

the

DB2

Universal

JDBC

Driver

DB2

UDB

for

z/OS

and

DB2

UDB

for

iSeries

support

the

ROWID

data

type

for

a

column

in

a

DB2

table.

A

ROWID

is

a

value

that

uniquely

identifies

a

row

in

a

table.

You

can

use

the

following

ResultSet

methods

to

retrieve

data

from

a

ROWID

column:

v

getBytes

v

getObject

For

getObject,

the

DB2

Universal

JDBC

Driver

returns

an

instance

of

the

DB2-only

class

com.ibm.db2.jcc.DB2RowID.

You

can

use

the

following

PreparedStatement

methods

to

set

a

value

for

a

parameter

that

is

associated

with

a

ROWID

column:

v

setBytes

v

setObject

For

setObject,

use

the

DB2-only

type

com.ibm.db2.jcc.Types.ROWID

or

an

instance

of

the

com.ibm.db2.jcc.DB2RowID

class

as

the

target

type

for

the

parameter.

Example:

Using

PreparedStatement.setObject

with

a

com.ibm.db2.jcc.DB2Types.ROWID

target

type:

To

set

parameter

1,

use

this

form

of

the

SetObject

method:

ps.setObject(1,

bytes[],

com.ibm.db2.jcc.DB2Types.ROWID);

Example:

Using

PreparedStatement.setObject

with

a

com.ibm.db2.jcc.DB2RowID

target

type:

Suppose

that

rwid

is

an

instance

of

com.ibm.db2.jcc.DB2RowID.

To

set

parameter

1,

use

this

form

of

the

SetObject

method:

ps.setObject

(1,

rwid);

To

call

a

stored

procedure

that

is

defined

with

a

ROWID

output

parameter,

register

that

parameter

to

be

of

the

com.ibm.db2.jcc.DB2Types.ROWID

type.

Example:

Using

CallableStatement.registerOutParameter

with

a

com.ibm.db2.jcc.DB2Types.ROWID

parameter

type:

To

register

parameter

1

of

a

CALL

statement

as

a

com.ibm.db2.jcc.DB2Types.ROWID

data

type,

use

this

form

of

the

registerOutParameter

method:

32

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

cs.registerOutParameter(1,

com.ibm.db2.jcc.DB2Types.ROWID)

Using

ROWIDs

with

the

JDBC/SQLJ

Driver

for

OS/390

You

can

use

the

following

ResultSet

method

to

retrieve

data

from

a

ROWID

column:

v

getBytes

You

can

use

the

following

PreparedStatement

method

to

store

data

in

a

ROWID

column:

v

setBytes

Using

graphic

string

constants

in

JDBC

applications

In

EBCDIC

environments,

graphic

string

constants

in

JDBC

applications

have

the

following

form:

G’\uxxxx\uxxxx...\uxxxx’

xxxx

is

the

Unicode

value

in

hexadecimal

that

corresponds

to

the

desired

EBCDIC

graphic

character.

For

example,

an

EBCDIC

double-byte

G

has

the

hexadecimal

value

42C7.

The

corresponding

Unicode

hexadecimal

value

is

FF27.

Therefore,

in

JDBC

methods,

you

represent

the

graphic

string

constant

for

an

EBCDIC

double-byte

G

as:

G’\uFF27’

The

following

code

demonstrates

using

the

Statement.executeUpdate

method

to

execute

an

SQL

statement

that

contains

a

graphic

string

constant:

Distinct

types

in

JDBC

applications

A

distinct

type

is

a

user-defined

data

type

that

is

internally

represented

as

a

built-in

SQL

data

type.

You

create

a

distinct

type

by

executing

the

SQL

statement

CREATE

DISTINCT

TYPE.

In

a

JDBC

program,

you

can

create

a

distinct

type

using

the

executeUpdate

method

to

execute

the

CREATE

DISTINCT

TYPE

statement.

You

can

also

use

executeUpdate

to

create

a

table

that

includes

a

column

of

that

type.

When

you

Connection

con;

Statement

stmt;

int

numUpd;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

//

GRAPHIC_TABLE

has

one

VARGRAPHIC(10)

column

named

VGCOL.

//

At

least

one

row

contains

the

string

"GRAPHIC"

in

double-byte

//

EBCDIC

characters.

The

Unicode

equivalent

of

"GRAPHIC"

is

//

G’\uFF27\uFF32\uFF21\uFF30\uFF28\uFF29\uFF23’.

//

Update

"GRAPHIC"

in

all

rows

to

"graphic"

in

double-byte

//

EBCDIC

characters.

The

Unicode

equivalent

of

"graphic"

is

//

G’\uFF47\uFF52\uFF41\uFF50\uFF48\uFF49\uFF43’

numUpd

=

stmt.executeUpdate(

"UPDATE

GRAPHIC_TABLE

"

+

"SET

VGCOL=G’\uFF47\uFF52\uFF41\uFF50\uFF48\uFF49\uFF43’

"

+

"WHERE

VGCOL=G’\uFF27\uFF32\uFF21\uFF30\uFF28\uFF29\uFF23’");

//

Perform

the

update

stmt.close();

//

Close

Statement

object

Figure

15.

Using

graphic

string

constants

in

a

JDBC

application

Chapter

2.

JDBC

application

programming

33

|

|
|

|

|
|

|
|
|

|

|
|
|

retrieve

data

from

a

column

of

that

type,

or

update

a

column

of

that

type,

you

use

Java™

identifiers

with

data

types

that

correspond

to

the

built-in

types

on

which

the

distinct

types

are

based.

The

following

example

creates

a

distinct

type

that

is

based

on

an

INTEGER

type,

creates

a

table

with

a

column

of

that

type,

inserts

a

row

into

the

table,

and

retrieves

the

row

from

the

table:

Savepoints

in

JDBC

applications

An

SQL

savepoint

represents

the

state

of

data

and

schemas

at

a

particular

point

in

time

within

a

unit

of

work.

SQL

statements

exist

to

set

a

savepoint,

release

a

savepoint,

and

restore

data

and

schemas

to

the

state

that

the

savepoint

represents.

The

DB2

Universal

JDBC

Driver

supports

the

following

methods

for

using

savepoints:

Connection.setSavepoint()

or

Connection.setSavepoint(String

name)

Sets

a

savepoint.

These

methods

return

a

Savepoint

object

that

is

used

in

later

releaseSavepoint

or

rollback

operations.

When

you

execute

either

of

these

methods,

DB2®

executes

the

form

of

the

SAVEPOINT

statement

that

includes

ON

ROLLBACK

RETAIN

CURSORS.

Connection.releaseSavepoint(Savepoint

savepoint)

Releases

the

specified

savepoint,

and

all

subsequently

established

savepoints.

Connection.rollback(Savepoint

savepoint)

Rolls

back

work

to

the

specified

savepoint.

DatabaseMetaData.supportsSavepoints()

Indicates

whether

a

data

source

supports

savepoints.

Connection

con;

Statement

stmt;

ResultSet

rs;

String

empNumVar;

int

shoeSizeVar;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

stmt.executeUpdate(

"CREATE

DISTINCT

TYPE

SHOESIZE

AS

INTEGER");

//

Create

distinct

type

stmt.executeUpdate(

"CREATE

TABLE

EMP_SHOE

(EMPNO

CHAR(6),

EMP_SHOE_SIZE

SHOESIZE)");

//

Create

table

with

distinct

type

stmt.executeUpdate("INSERT

INTO

EMP_SHOE

"

+

"VALUES

(’000010’,

6)");

//

Insert

a

row

rs=stmt.executeQuery("SELECT

EMPNO,

EMP_SHOE_SIZE

FROM

EMP_SHOE);

//

Create

ResultSet

for

query

while

(rs.next())

{

empNumVar

=

rs.getString(1);

//

Get

employee

number

shoeSizeVar

=

rs.getInt(2);

//

Get

shoe

size

(use

int

//

because

underlying

type

//

of

SHOESIZE

is

INTEGER)

System.out.println("Employee

number

=

"

+

empNumVar

+

"

Shoe

size

=

"

+

shoeSizeVar);

}

rs.close();

//

Close

ResultSet

stmt.close();

//

Close

Statement

Figure

16.

Creating

and

using

a

distinct

type

34

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

Although

the

JDBC/SQLJ

Driver

for

OS/390

does

not

support

these

methods,

you

can

still

set

savepoints,

release

savepoints,

and

roll

back

to

savepoints

by

executing

the

SAVEPOINT,

RELEASE

SAVEPOINT,

and

ROLLBACK

TO

SAVEPOINT

SQL

statements

using

the

executeUpdate

or

execute

methods.

The

following

example

demonstrates

how

to

set

a

savepoint,

roll

back

to

the

savepoint,

and

release

the

savepoint.

Retrieving

identity

column

values

in

JDBC

applications

An

identity

column

is

a

DB2®

table

column

that

provides

a

way

for

DB2

to

automatically

generate

a

numeric

value

for

each

row.

You

define

an

identity

column

in

a

CREATE

TABLE

or

ALTER

TABLE

statement

by

specifying

the

AS

IDENTITY

clause

when

you

define

a

column

that

has

an

exact

numeric

type

with

a

scale

of

0

(SMALLINT,

INTEGER,

DECIMAL

with

a

scale

of

zero,

or

a

distinct

type

based

on

one

of

these

types).

If

you

are

using

the

DB2

Universal

JDBC

Driver,

you

can

retrieve

identity

columns

from

a

DB2

table

using

JDBC

3.0

methods.

In

a

JDBC

program,

identity

columns

are

known

as

automatically

generated

keys.

To

enable

retrieval

of

automatically

generated

keys

from

a

table,

you

need

to

indicate

when

you

insert

rows

that

you

will

want

to

retrieve

automatically

generated

key

values.

You

do

that

by

setting

a

flag

in

a

Connection.prepareStatement,

Statement.executeUpdate,

or

Statement.execute

method

call.

The

statement

that

is

executed

must

be

an

INSERT

statement

or

an

INSERT

within

SELECT

statement.

Otherwise,

the

JDBC

driver

ignores

the

parameter

that

sets

the

flag.

To

retrieve

automatically

generated

keys

from

a

DB2

table,

you

need

to

perform

these

steps:

Connection

con;

Statement

stmt;

ResultSet

rs;

String

empNumVar;

int

shoeSizeVar;

...

con.setAutoCommit(false);

//

set

autocommit

OFF

stmt

=

con.createStatement();

//

Create

a

Statement

object

stmt.executeUpdate(

"CREATE

DISTINCT

TYPE

SHOESIZE

AS

INTEGER");

//

Create

distinct

type

con.commit();

//

Commit

the

create

stmt.executeUpdate(

"CREATE

TABLE

EMP_SHOE

(EMPNO

CHAR(6),

EMP_SHOE_SIZE

SHOESIZE)");

//

Create

table

with

distinct

type

con.commit();

//

Commit

the

create

stmt.executeUpdate("INSERT

INTO

EMP_SHOE

"

+

"VALUES

(’000010’,

6)");

//

Insert

a

row

Savepoint

savept

=

con.setSavepoint();

//

Create

a

savepoint

...

stmt.executeUpdate("INSERT

INTO

EMP_SHOE

"

+

"VALUES

(’000020’,

10)");

//

Insert

another

row

conn.rollback(savept);

//

Roll

back

work

to

the

point

//

after

the

first

insert

...

con.releaseSavepoint(savept);

//

Release

the

savepoint

stmt.close();

//

Close

the

Statement

Figure

17.

Setting,

rolling

back

to,

and

releasing

a

savepoint

in

a

JDBC

application

Chapter

2.

JDBC

application

programming

35

|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

1.

Use

one

of

the

following

methods

to

indicate

that

you

want

to

return

automatically

generated

keys:

v

If

you

plan

to

use

the

PreparedStatement.executeUpdate

method

to

insert

rows,

invoke

one

of

these

forms

of

the

Connection.prepareStatement

method

to

create

a

PreparedStatement

object:

Use

this

form

for

a

table

on

any

database

server

that

supports

identity

columns:

Connection.prepareStatement(sql-statement,

Statement.RETURN_GENERATED_KEYS);

Use

this

form

only

for

a

table

on

any

database

server

that

supports

identity

columns

and

INSERT

within

SELECT:

Connection.prepareStatement(sql-statement,

String

[]

columnNames);

v

If

you

use

the

Statement.executeUpdate

method

to

insert

rows,

invoke

one

of

these

form

of

the

Statement.executeUpdate

method:

Use

this

form

for

a

table

on

any

database

server

that

supports

identity

columns:

Statement.executeUpdate(sql-statement,

Statement.RETURN_GENERATED_KEYS);

Use

this

form

only

for

a

table

on

any

database

server

that

supports

identity

columns

and

INSERT

within

SELECT:

Statement.executeUpdate(sql-statement,

String

[]

columnNames);

v

If

you

use

the

Statement.execute

method

to

insert

rows,

invoke

one

of

these

forms

of

the

Statement.execute

method:

Use

this

form

for

a

table

on

any

database

server

that

supports

identity

columns:

Statement.execute(sql-statement,

Statement.RETURN_GENERATED_KEYS);

Use

this

form

only

for

a

table

on

any

database

server

that

supports

identity

columns

and

INSERT

within

SELECT:

Statement.execute(sql-statement,

String

[]

columnNames);

2.

Invoke

the

PreparedStatement.getGeneratedKeys

method

or

the

Statement.getGeneratedKeys

method

to

retrieve

a

ResultSet

object

that

contains

the

automatically

generated

key

values.

The

data

type

of

the

automatically

generated

keys

in

the

ResultSet

is

DECIMAL,

regardless

of

the

data

type

of

the

corresponding

column.

The

following

code

creates

a

table

with

an

identity

column,

inserts

rows

into

the

table,

and

retrieves

automatically

generated

key

values

for

the

identity

column.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

36

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|

With

any

JDBC

driver,

you

can

retrieve

the

most

recently

assigned

value

of

an

identity

column

using

the

DB2

UDB

IDENTITY_VAL_LOCAL()

built-in

function.

Execute

code

similar

to

this:

Retrieving

multiple

result

sets

from

a

stored

procedure

in

a

JDBC

application

If

you

call

a

stored

procedure

that

returns

result

sets,

you

need

to

include

code

to

retrieve

the

result

sets.

The

steps

that

you

take

depend

on

whether

you

know

how

many

result

sets

are

returned,

and

whether

you

know

the

contents

of

those

result

sets.

Connection

con;

Statement

stmt;

ResultSet

rs;

java.math.BigDecimal

iDColVar;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

stmt.executeUpdate(

"CREATE

TABLE

EMP_PHONE

(EMPNO

CHAR(6),

PHONENO

CHAR(4),

"

+

"IDENTCOL

INTEGER

GENERATED

ALWAYS

AS

IDENTITY)");

//

Create

table

with

identity

column

stmt.executeUpdate("INSERT

INTO

EMP_PHONE

"

+

�1�

"VALUES

(’000010’,

"5555")",

//

Insert

a

row

Statement.RETURN_GENERATED_KEYS);

//

Indicate

you

want

automatically

//

generated

keys

rs

=

stmt.getGeneratedKeys();

//

Retrieve

the

automatically

�2�

//

generated

key

value

in

a

ResultSet.

//

Only

one

row

is

returned.

//

Create

ResultSet

for

query

while

(rs.next())

{

idColVar

=

rs.getBigDecimal(1);

//

Get

automatically

generated

key

//

value

System.out.println("automatically

generated

key

value

=

"

+

idColVar);

}

rs.close();

//

Close

ResultSet

stmt.close();

//

Close

Statement

Figure

18.

Retrieving

automatically

generated

keys

String

idntVal;

Connection

con;

Statement

stmt;

ResultSet

rs;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

rs

=

stmt.executeQuery("SELECT

IDENTITY_VAL_LOCAL()

FROM

SYSIBM.SYSDUMMY1");

//

Get

the

result

table

from

the

query.

//

This

is

a

single

row

with

the

most

//

recent

identity

column

value.

while

(rs.next())

{

//

Position

the

cursor

idntVal

=

rs.getString(1);

//

Retrieve

column

value

System.out.println("Identity

column

value

=

"

+

idntVal);

//

Print

the

column

value

}

rs.close();

//

Close

the

ResultSet

stmt.close();

//

Close

the

Statement

Figure

19.

Using

IDENTITY_VAL_LOCAL()

to

return

the

most

recent

value

of

an

identity

column

Chapter

2.

JDBC

application

programming

37

|
|
|
|

Retrieving

a

known

number

of

result

sets:

To

retrieve

result

sets

when

you

know

the

number

of

result

sets

and

their

contents,

follow

these

steps:

1.

Invoke

the

Statement.execute

method

or

PreparedStatement.execute

method

to

call

the

stored

procedure.

Use

PreparedStatement.execute

if

the

stored

procedure

has

input

parameters.

2.

Invoke

the

getResultSet

method

to

obtain

the

first

result

set,

which

is

in

a

ResultSet

object.

3.

In

a

loop,

position

the

cursor

using

the

next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

4.

If

there

are

n

result

sets,

repeat

the

following

steps

n-1

times:

a.

Invoke

the

getMoreResults

method

to

close

the

current

result

set

and

point

to

the

next

result

set.

b.

Invoke

the

getResultSet

method

to

obtain

the

next

result

set,

which

is

in

a

ResultSet

object.

c.

In

a

loop,

position

the

cursor

using

the

next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

The

following

code

illustrates

retrieving

two

result

sets.

The

first

result

set

contains

an

INTEGER

column,

and

the

second

result

set

contains

a

CHAR

column.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Retrieving

an

unknown

number

of

result

sets:

To

retrieve

result

sets

when

you

do

not

know

the

number

of

result

sets

or

their

contents,

you

need

to

retrieve

ResultSets,

until

no

more

ResultSets

are

returned.

For

each

ResultSet,

use

ResultSetMetaData

methods

to

determine

its

contents.

See

“Using

ResultSetMetaData

to

learn

about

a

ResultSet”

on

page

40

for

more

information

on

determining

the

contents

of

a

ResultSet.

CallableStatement

cstmt;

ResultSet

rs;

int

i;

String

s;

...

cstmt.execute();

//

Call

the

stored

procedure

�1�

rs

=

cstmt.getResultSet();

//

Get

the

first

result

set

�2�

while

(rs.next())

{

//

Position

the

cursor

�3�

i

=

rs.getInt(1);

//

Retrieve

current

result

set

value

System.out.println("Value

from

first

result

set

=

"

+

i);

//

Print

the

value

}

cstmt.getMoreResults();

//

Point

to

the

second

result

set

�4a�

//

and

close

the

first

result

set

rs

=

cstmt.getResultSet();

//

Get

the

second

result

set

�4b�

while

(rs.next())

{

//

Position

the

cursor

�4c�

s

=

rs.getString(1);

//

Retrieve

current

result

set

value

System.out.println("Value

from

second

result

set

=

"

+

s);

//

Print

the

value

}

rs.close();

//

Close

the

result

set

cstmt.close();

//

Close

the

statement

Figure

20.

Retrieving

known

result

sets

from

a

stored

procedure

38

Application

Programming

Guide

and

Reference

for

Java™

After

you

call

a

stored

procedure,

follow

these

basic

steps

to

retrieve

the

contents

of

an

unknown

number

of

result

sets.

1.

Check

the

value

that

was

returned

from

the

execute

statement

that

called

the

stored

procedure.

If

the

returned

value

is

true,

there

is

at

least

one

result

set,

so

you

need

to

go

to

the

next

step.

2.

Repeat

the

following

steps

in

a

loop:

a.

Invoke

the

getResultSet

method

to

obtain

a

result

set,

which

is

in

a

ResultSet

object.

Invoking

this

method

closes

the

previous

result

set.

b.

Process

the

ResultSet,

as

shown

in

“Using

ResultSetMetaData

to

learn

about

a

ResultSet”

on

page

40.

c.

Invoke

the

getMoreResults

method

to

determine

whether

there

is

another

result

set.

If

getMoreResults

returns

true,

go

to

step

2a

to

get

the

next

result

set.

The

following

code

illustrates

retrieving

result

sets

when

you

do

not

know

the

number

of

result

sets

or

their

contents.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Keeping

result

sets

open:

In

Figure

21,

invocation

of

getMoreResults()

closes

the

ResultSet

object

that

is

returned

by

the

previous

invocation

of

getResultSet.

However,

if

you

are

using

the

DB2

Universal

JDBC

Driver,

you

can

invoke

the

JDBC

3

form

of

getMoreResults,

which

has

a

parameter

that

determines

whether

the

current

ResultSet

or

previously-opened

ResultSets

are

closed.

This

form

of

getMoreResults

requires

JDK

1.4

or

later.

You

can

specify

one

of

these

constants:

Statement.KEEP_CURRENT_RESULT

Checks

for

the

next

ResultSet,

but

does

not

close

the

current

ResultSet.

Statement.CLOSE_CURRENT_RESULT

Checks

for

the

next

ResultSet,

and

closes

the

current

ResultSet.

Statement.CLOSE_ALL_RESULTS

Closes

all

ResultSets

that

were

previously

kept

open.

For

example,

the

code

in

Figure

22

on

page

40

keeps

all

ResultSets

open

until

the

final

ResultSet

has

been

retrieved,

and

then

closes

all

ResultSets.

CallableStatement

cstmt;

ResultSet

rs;

...

boolean

resultsAvailable

=

cstmt.execute();

//

Call

the

stored

procedure

while

(resultsAvailable)

{

//

Test

for

result

sets

�1�

ResultSet

rs

=

cstmt.getResultSet();

//

Get

a

result

set

�2a�

...

//

process

ResultSet

resultsAvailable

=

cstmt.getMoreResults();

//

Check

for

next

result

set

�2c�

//

(Also

closes

the

//

previous

result

set)

}

Figure

21.

Retrieving

unknown

result

sets

from

a

stored

procedure

Chapter

2.

JDBC

application

programming

39

Using

ResultSetMetaData

to

learn

about

a

ResultSet

Previous

discussions

of

retrieving

data

from

a

table

or

stored

procedure

result

set

assumed

that

you

know

the

number

of

columns

and

data

types

of

the

columns

in

the

table

or

result

set.

This

is

not

always

the

case,

especially

when

you

are

retrieving

data

from

a

remote

data

source.

When

you

write

programs

that

retrieve

unknown

ResultSets,

you

need

to

use

ResultSetMetaData

methods

to

determine

the

characteristics

of

the

ResultSets

before

you

can

retrieve

data

from

them.

ResultSetMetaData

methods

provide

the

following

types

of

information:

v

The

number

of

columns

in

a

ResultSet

v

The

qualifier

for

the

underlying

table

of

the

ResultSet

v

Information

about

a

column,

such

as

the

data

type,

length,

precision,

scale,

and

nullability

v

Whether

a

column

is

read-only

After

you

invoke

the

executeQuery

method

to

generate

a

ResultSet

for

a

query

on

a

table,

follow

these

basic

steps

to

determine

the

contents

of

the

ResultSet:

1.

Invoke

the

getMetaData

method

on

the

ResultSet

object

to

create

a

ResultSetMetaData

object.

2.

Invoke

the

getColumnCount

method

to

determine

how

many

columns

are

in

the

ResultSet.

3.

For

each

column

in

the

ResultSet,

execute

ResultSetMetaData

methods

to

determine

column

characteristics.

The

results

of

ResultSetMetaData.getColumnName

for

the

same

table

definition

might

differ,

depending

on

the

data

source.

However,

the

returned

information

correctly

reflects

the

column

name

information

that

is

stored

in

the

DB2®

catalog

for

that

data

source.

For

example,

the

following

code

demonstrates

how

to

determine

the

data

types

of

all

the

columns

in

the

employee

table.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

CallableStatement

cstmt;

ResultSet

rs;

...

boolean

resultsAvailable

=

cstmt.execute();

//

Call

the

stored

procedure

while

(resultsAvailable)

{

//

Test

for

result

sets

ResultSet

rs

=

cstmt.getResultSet();

//

Get

a

result

set

...

//

process

ResultSet

resultsAvailable

=

cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

//

Check

for

next

result

set

//

but

do

not

close

//

previous

result

set

}

resultsAvailable

=

cstmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

//

Close

the

result

sets

Figure

22.

Keeping

retrieved

stored

procedure

result

sets

open

40

Application

Programming

Guide

and

Reference

for

Java™

Using

DatabaseMetaData

to

learn

about

a

data

source

The

DatabaseMetaData

interface

contains

methods

that

retrieve

information

about

a

data

source.

These

methods

are

useful

when

you

write

generic

applications

that

can

access

various

data

sources.

In

these

types

of

applications,

you

need

to

test

whether

a

data

source

can

handle

various

database

operations

before

you

execute

them.

For

example,

you

need

to

determine

whether

the

driver

at

a

data

source

is

at

the

JDBC

2.0

level

before

you

invoke

JDBC

2.0

methods

against

that

driver.

DatabaseMetaData

methods

provide

the

following

types

of

information:

v

Features

that

the

data

source

supports,

such

as

the

ANSI

SQL

level

v

Specific

information

about

the

data

source,

such

as

the

driver

level

v

Limits,

such

as

the

maximum

number

of

columns

that

an

index

can

have

v

Whether

the

data

source

supports

data

definition

statements

(CREATE,

ALTER,

DROP,

GRANT,

REVOKE)

v

Lists

of

objects

at

the

data

source,

such

as

tables,

indexes,

or

procedures

v

Whether

the

data

source

supports

various

JDBC

2.0

functions,

such

as

batch

updates

or

scrollable

ResultSets

To

invoke

DatabaseMetaData

methods,

you

need

to

perform

these

basic

steps:

1.

Create

a

DatabaseMetaData

object

by

invoking

the

getMetaData

method

on

the

connection.

2.

Invoke

DatabaseMetaData

methods

to

get

information

about

the

data

source.

3.

If

the

method

returns

a

ResultSet:

a.

In

a

loop,

position

the

cursor

using

the

next

method,

and

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object

using

getXXX

methods.

b.

Invoke

the

close

method

to

close

the

ResultSet

object.

String

s;

Connection

con;

Statement

stmt;

ResultSet

rs;

ResultSetMetaData

rsmtadta;

int

colCount

int

mtadtaint;

int

i;

String

colName;

String

colType;

...

stmt

=

con.createStatement();

//

Create

a

Statement

object

rs

=

stmt.executeQuery("SELECT

*

FROM

EMPLOYEE");

//

Get

the

ResultSet

from

the

query

rsmtadta

=

rs.getMetaData();

//

Create

a

ResultSetMetaData

object

�1�

colCount

=

rsmtadta.getColumnCount();

�2�

//

Find

number

of

columns

in

EMP

for

(i=1;

i<=

colCount;

i++)

{

�3�

colName

=

rsmtadta.getColumnName();

//

Get

column

name

colType

=

rsmtadta.getColumnTypeName();

//

Get

column

data

type

System.out.println("Column

=

"

+

colName

+

"

is

data

type

"

+

colType);

//

Print

the

column

value

}

Figure

23.

Using

ResultSetMetaData

methods

to

get

information

about

a

ResultSet

Chapter

2.

JDBC

application

programming

41

For

example,

the

following

code

demonstrates

how

to

use

DatabaseMetaData

methods

to

determine

the

driver

version

and

get

a

list

of

the

stored

procedures

that

are

available

at

the

data

source.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Using

ParameterMetaData

to

learn

about

parameters

in

a

PreparedStatement

The

DB2

Universal

JDBC

Driver

includes

support

for

the

ParameterMetaData

interface.

The

ParameterMetaData

interface

contains

methods

that

retrieve

information

about

the

parameter

markers

in

a

PreparedStatement

object.

ParameterMetaData

methods

provide

the

following

types

of

information:

v

The

data

types

of

parameters,

including

the

precision

and

scale

of

decimal

parameters.

v

The

parameters’

database-specific

type

names.

For

parameters

that

correspond

to

table

columns

that

are

defined

with

distinct

types,

these

names

are

the

distinct

type

names.

v

Whether

parameters

are

nullable.

v

Whether

parameters

are

input

or

output

parameters.

v

Whether

the

values

of

a

numeric

parameter

can

be

signed.

v

The

fully-qualified

Java™

class

name

that

PreparedStatement.setObject

uses

when

it

sets

a

parameter

value.

To

invoke

ParameterMetaData

methods,

you

need

to

perform

these

basic

steps:

1.

Invoke

the

Connection.prepareStatement

method

to

create

a

PreparedStatement

object.

2.

Invoke

the

PreparedStatement.getParameterMetaData

method

to

retrieve

a

ParameterMetaData

object.

3.

Invoke

ParameterMetaData.getParameterCount

to

determine

the

number

of

parameters

in

the

PreparedStatement.

4.

Invoke

ParameterMetaData

methods

on

individual

parameters.

Connection

con;

DatabaseMetaData

dbmtadta;

ResultSet

rs;

int

mtadtaint;

String

procSchema;

String

procName;

...

dbmtadta

=

con.getMetaData();

//

Create

the

DatabaseMetaData

object

�1�

mtadtaint

=

dmtadta.getDriverVersion();

�2�

//

Check

the

driver

version

System.out.println("Driver

version:

"

+

mtadtaint);

rs

=

dbmtadta.getProcedures(null,

null,

"%");

//

Get

information

for

all

procedures

while

(rs.next())

{

//

Position

the

cursor

�3a�

procSchema

=

rs.getString("PROCEDURE_SCHEM");

//

Get

procedure

schema

procName

=

rs.getString("PROCEDURE_NAME");

//

Get

procedure

name

System.out.println(procSchema

+

"."

+

procName);

//

Print

the

qualified

procedure

name

}

rs.close();

//

Close

the

ResultSet

�3b�

Figure

24.

Using

DatabaseMetaData

methods

to

get

information

about

a

data

source

42

Application

Programming

Guide

and

Reference

for

Java™

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|

For

example,

the

following

code

demonstrates

how

to

use

ParameterMetaData

methods

to

determine

the

number

and

data

types

of

parameters

in

an

SQL

UPDATE

statement.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Making

batch

updates

in

JDBC

applications

The

JDBC

drivers

that

support

JDBC

2.0

and

above

support

batch

updates.

With

batch

updates,

instead

of

updating

rows

of

a

DB2®

table

one

at

a

time,

you

can

direct

JDBC

to

execute

a

group

of

updates

at

the

same

time.

Statements

that

can

be

included

in

the

same

batch

of

updates

are

known

as

batchable

statements.

If

a

statement

has

input

parameters

or

host

expressions,

you

can

include

that

statement

only

in

a

batch

that

has

other

instances

of

the

same

statement.

This

type

of

batch

is

known

as

a

homogeneous

batch.

If

a

statement

has

no

input

parameters,

you

can

include

that

statement

in

a

batch

only

if

the

other

statements

in

the

batch

have

no

input

parameters

or

host

expressions.

This

type

of

batch

is

known

as

a

heterogeneous

batch.

Two

statements

that

can

be

included

in

the

same

batch

are

known

as

batch

compatible.

Use

the

following

Statement

methods

for

creating,

executing,

and

removing

a

batch

of

SQL

updates:

v

addBatch

v

executeBatch

v

clearBatch

Use

the

following

PreparedStatement

and

CallableStatement

method

for

creating

a

batch

of

parameters

so

that

a

single

statement

can

be

executed

multiple

times

in

a

batch,

with

a

different

set

of

parameters

for

each

execution.

v

addBatch

To

make

batch

updates

using

several

statements

with

no

input

parameters,

follow

these

basic

steps:

1.

Disable

AutoCommit

for

the

Connection

object.

2.

Invoke

the

createStatement

method

to

create

a

Statement

object.

Connection

con;

ParameterMetaData

pmtadta;

int

mtadtacnt;

int

sqlType;

...

pstmt

=

con.prepareStatement(

"UPDATE

EMPLOYEE

SET

PHONENO=?

WHERE

EMPNO=?");

//

Create

a

PreparedStatement

object

�1�

pmtadta

=

pstmt.getParameterMetaData();

�2�

//

Create

a

ParameterMetaData

object

mtadtacnt

=

pmtadta.getParameterCount();

�3�

//

Determine

the

number

of

parameters

System.out.println("Number

of

statement

parameters:

"

+

mtadtacnt);

for

(int

i

=

1;

i

<=

mtadtacnt;

i++)

{

sqlType

=

pmtadta.getParameterType(i);

�4�

//

Get

SQL

type

for

each

parameter

System.out.println("SQL

type

of

parameter

"

+

i

"

is

"

+

sqlType);

}

...

pstmt.close();

//

Close

the

PreparedStatement

Figure

25.

Using

ParameterMetaData

methods

to

get

information

about

a

PreparedStatement

Chapter

2.

JDBC

application

programming

43

|
|
|
|
|

3.

For

each

SQL

statement

that

you

want

to

execute

in

the

batch,

invoke

the

addBatch

method.

4.

Invoke

the

executeBatch

method

to

execute

the

batch

of

statements.

5.

Check

for

errors.

If

no

errors

occurred:

a.

Get

the

number

of

rows

that

were

affect

by

each

SQL

statement

from

the

array

that

the

executeBatch

invocation

returns.

This

number

does

not

include

rows

that

were

affected

by

triggers

or

by

referential

integrity

enforcement.

b.

Invoke

the

commit

method

to

commit

the

changes.

To

make

batch

updates

using

a

single

statement

with

several

sets

of

input

parameters,

follow

these

basic

steps:

1.

Disable

AutoCommit

for

the

Connection

object.

2.

Invoke

the

prepareStatement

method

to

create

a

PreparedStatement

object

for

the

SQL

statement

with

input

parameters.

3.

For

each

set

of

input

parameter

values:

a.

Execute

setXXX

methods

to

assign

values

to

the

input

parameters.

b.

Invoke

the

addBatch

method

to

add

the

set

of

input

parameters

to

the

batch.

4.

Invoke

the

executeBatch

method

to

execute

the

statements

with

all

sets

of

parameters.

5.

Check

for

errors.

If

no

errors

occurred:

a.

Get

the

number

of

rows

that

were

updated

by

each

execution

of

the

SQL

statement

from

the

array

that

the

executeBatch

invocation

returns.

b.

Invoke

the

commit

method

to

commit

the

changes.

Example

of

a

batch

update:

In

the

following

code

fragment,

two

sets

of

parameters

are

batched.

An

UPDATE

statement

that

takes

two

input

parameters

is

then

executed

twice,

once

with

each

set

of

parameters.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

44

Application

Programming

Guide

and

Reference

for

Java™

Retrieving

information

from

a

BatchUpdateException

When

an

error

occurs

during

execution

of

a

statement

in

a

batch,

processing

continues.

However,

executeBatch

throws

a

BatchUpdateException.

A

BatchUpdateException

object

contains

the

following

items:

v

A

String

object

that

contains

a

description

of

the

error,

or

null.

v

A

String

object

that

contains

the

SQLSTATE

for

the

failing

SQL

statement,

or

null

v

An

integer

value

that

contains

the

error

code,

or

zero

v

An

integer

array

of

update

counts

for

SQL

statements

in

the

batch,

or

null

v

A

pointer

to

an

SQLException

object,

or

null

One

BatchUpdateException

is

thrown

for

the

entire

batch.

At

least

one

SQLException

object

is

chained

to

the

BatchUpdateException

object.

The

SQLException

objects

are

chained

in

the

same

order

as

the

corresponding

statements

were

added

to

the

batch.

To

help

you

match

SQLException

objects

to

statements

in

the

batch,

the

error

description

field

for

each

SQLException

object

begins

with

this

string:

Error

for

batch

element

#n:

n

is

the

number

of

the

statement

in

the

batch.

To

retrieve

information

from

the

BatchUpdateException,

follow

these

steps:

1.

Use

the

BatchUpdateException.getUpdateCounts

method

to

determine

the

number

of

rows

that

each

SQL

statement

updated.

getUpdateCounts

returns

-2

if

the

number

of

updated

rows

cannot

be

determined,

or

-3

if

an

error

occurred

during

an

update.

2.

Use

SQLException

methods

getMessage,

getSQLState,

and

getErrorCode

to

retrieve

the

description

of

the

error,

the

SQLSTATE,

and

the

error

code

for

the

first

error.

try

{

...

connection

con.setAutoCommit(false);

�1�

PreparedStatement

prepStmt

=

con.prepareStatement(

"UPDATE

DEPT

SET

MGRNO=?

WHERE

DEPTNO=?");

�2�

prepStmt.setString(1,mgrnum1);

�3a�

prepStmt.setString(2,deptnum1);

prepStmt.addBatch();

�3b�

prepStmt.setString(1,mgrnum2);

prepStmt.setString(2,deptnum2);

prepStmt.addBatch();

int

[]

numUpdates=prepStmt.executeBatch();

�4�

for

(int

i=0;

i

<

numUpdates.length;

i++)

{

�5a�

if

(numUpdates[i]

==

-2)

System.out.println("Execution

"

+

i

+

":

unknown

number

of

rows

updated");

else

System.out.println("Execution

"

+

i

+

"successful:

"

numUpdates[i]

+

"

rows

updated");

}

con.commit();

�5b�

}

catch(BatchUpdateException

b)

{

//

process

BatchUpdateException

}

Figure

26.

Performing

a

batch

update

Chapter

2.

JDBC

application

programming

45

3.

Use

the

BatchUpdateException.getNextException

method

to

get

a

chained

SQLException.

4.

In

a

loop,

execute

the

getMessage,

getSQLState,

getErrorCode,

and

getNextException

method

calls

to

obtain

information

about

an

SQLException

and

get

the

next

SQLException.

Example

of

obtaining

information

from

a

BatchUpdateException:

The

following

code

fragment

demonstrates

how

to

obtain

the

fields

of

a

BatchUpdateException

and

the

chained

SQLException

objects.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

To

obtain

information

about

warnings,

use

the

Statement.getWarnings

method

on

the

object

on

which

you

ran

the

executeBatch

method.

You

can

then

retrieve

an

error

description,

SQLSTATE,

and

error

code

for

each

SQLWarning

object.

Restrictions

on

executing

statements

in

a

batch:

v

If

you

try

to

execute

a

SELECT

statement

in

a

batch,

a

BatchUpdateException

is

thrown.

v

A

CallableStatement

object

that

you

execute

in

a

batch

can

contain

output

parameters.

However,

you

cannot

retrieve

the

values

of

the

output

parameters.

If

you

try

to

do

so,

a

BatchUpdateException

is

thrown.

v

You

cannot

retrieve

ResultSet

objects

from

a

CallableStatement

object

that

you

execute

in

a

batch.

A

BatchUpdateException

is

not

thrown,

but

the

getResultSet

method

invocation

returns

a

null

value.

Characteristics

of

a

JDBC

ResultSet

under

the

DB2

Universal

JDBC

Driver

In

addition

to

moving

forward,

one

row

at

a

time,

through

a

ResultSet,

you

might

want

to

do

the

following

things:

v

Move

backward

or

go

directly

to

a

specific

row

v

Update

or

delete

rows

of

a

ResultSet

v

Leave

the

ResultSet

open

after

a

COMMIT

try

{

//

Batch

updates

}

catch(BatchUpdateException

buex)

{

System.err.println("Contents

of

BatchUpdateException:");

System.err.println("

Update

counts:

");

int

[]

updateCounts

=

buex.getUpdateCounts();

�1�

for

(int

i

=

0;

i

<

updateCounts.length;

i++)

{

System.err.println("

Statement

"

+

i

+

":"

+

updateCounts[i]);

}

System.err.println("

Message:

"

+

buex.getMessage());

�2�

System.err.println("

SQLSTATE:

"

+

buex.getSQLState());

System.err.println("

Error

code:

"

+

buex.getErrorCode());

SQLException

ex

=

buex.getNextException();

�3�

while

(ex

!=

null)

{

�4�

System.err.println("SQL

exception:");

System.err.println("

Message:

"

+

ex.getMessage());

System.err.println("

SQLSTATE:

"

+

ex.getSQLState());

System.err.println("

Error

code:

"

+

ex.getErrorCode());

ex

=

ex.getNextException();

}

}

Figure

27.

Retrieving

a

BatchUpdateException

fields

46

Application

Programming

Guide

and

Reference

for

Java™

The

DB2

Universal

JDBC

Driver

provides

the

capability

to

do

these

things.

The

following

terms

describe

characteristics

of

a

ResultSet:

scrollability

Whether

the

cursor

can

move

forward,

backward,

or

to

a

specific

row.

updatability

Whether

the

cursor

can

be

used

to

update

or

delete

rows.

This

characteristic

does

not

apply

to

a

ResultSet

that

is

returned

from

a

stored

procedure,

because

a

stored

procedure

ResultSet

cannot

be

updated.

holdability

Whether

the

cursor

stays

open

after

a

COMMIT.

A

scrollable

ResultSet

in

JDBC

is

equivalent

to

the

result

table

of

a

DB2®

cursor

that

is

declared

as

SCROLL.

A

scrollable

cursor

can

be

insensitive

or

sensitive.

Insensitive

means

that

changes

to

the

underlying

table

after

the

cursor

is

opened

are

not

visible

to

the

cursor.

Insensitive

cursors

are

read-only.

Sensitive

means

the

following

things:

v

Changes

that

the

cursor

makes

to

the

underlying

table

are

always

visible

to

the

cursor.

v

Changes

that

are

made

by

other

means

to

the

underlying

table

can

be

visible

to

the

cursor.

In

DB2,

if

the

rows

are

fetched

with

FETCH

INSENSITIVE,

changes

that

are

made

by

other

means

are

not

visible

to

the

cursor.

If

the

rows

are

fetched

with

FETCH

SENSITIVE,

changes

that

are

made

by

other

means

are

visible

to

the

cursor.

In

JDBC,

calling

the

refreshRow

method

before

calling

getXXX

methods

has

the

same

effect

as

FETCH

SENSITIVE.

A

JDBC

ResultSet

can

also

be

static

or

dynamic,

if

the

database

server

supports

both

attributes.

You

determine

whether

scrollable

cursors

in

a

program

are

static

or

dynamic

by

setting

the

cursorSensitivity

property.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

more

information

about

the

cursorSensitivity

property.

If

a

JDBC

ResultSet

is

static,

the

size

of

the

result

table

and

the

order

of

the

rows

in

the

result

table

do

not

change

after

the

cursor

is

opened.

This

means

that

you

cannot

insert

into

a

result

table,

and

if

you

delete

a

row

of

a

result

table,

a

delete

hole

occurs.You

can

test

whether

the

current

row

is

a

delete

hole

by

using

the

rowDeleted

method.

See

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

114

for

a

complete

list

of

the

methods

that

are

supported

for

ResultSets.

Specifying

updatability,

scrollability,

and

holdability

for

ResultSets

in

JDBC

applications

To

specify

scrollability,

updatability,

and

holdability

for

a

ResultSet,

you

need

to

follow

these

steps:

1.

If

the

SELECT

statement

that

defines

the

ResultSet

has

no

input

parameters,

invoke

the

createStatement

method

to

create

a

Statement

object.

Otherwise,

invoke

the

prepareStatement

method

to

create

a

PreparedStatement

object.

You

need

to

specify

forms

of

the

createStatement

or

prepareStatement

methods

that

include

the

resultSetType,

resultSetConcurrency,

or

resultSetHoldability

parameters.

The

form

of

the

createStatement

method

that

supports

scrollability

and

updatability

is:

createStatement(int

resultSetType,

int

resultSetConcurrency);

Chapter

2.

JDBC

application

programming

47

|
|
|
|
|

The

form

of

the

createStatement

method

that

supports

scrollability,

updatability,

and

holdability

is:

createStatement(int

resultSetType,

int

resultSetConcurrency,

int

resultSetHoldability);

The

form

of

the

prepareStatement

method

that

supports

scrollability

and

updatability

is:

prepareStatement(String

sql,

int

resultSetType,

int

resultSetConcurrency);

The

form

of

the

prepareStatement

method

that

supports

scrollability,

updatability,

and

holdability

is:

prepareStatement(String

sql,

int

resultSetType,

int

resultSetConcurrency,

int

resultSetHoldability);

See

Table

2

for

a

list

of

valid

values

for

resultSetType

and

resultSetConcurrency.

Table

2.

Valid

combinations

of

resultSetType

and

resultSetConcurrency

for

scrollable

ResultSets

resultSetType

value

resultSetConcurrency

value

TYPE_FORWARD_ONLY

CONCUR_READ_ONLY

TYPE_FORWARD_ONLY

CONCUR_UPDATABLE

TYPE_SCROLL_INSENSITIVE

CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE

CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE

CONCUR_UPDATABLE

resultSetHoldability

has

two

possible

values:

HOLD_CURSORS_OVER_COMMIT

and

CLOSE_CURSORS_AT_COMMIT.

Either

of

these

values

can

be

specified

with

any

valid

combination

of

resultSetConcurrency

and

resultSetHoldability.

The

value

that

you

set

overrides

the

default

holdability

for

the

connection.

2.

If

the

SELECT

statement

has

input

parameters,

invoke

setXXX

methods

to

pass

values

to

the

input

parameters.

3.

Invoke

the

executeQuery

method

to

obtain

the

result

table

from

the

SELECT

statement

in

a

ResultSet

object.

4.

For

each

row

that

you

want

to

access:

a.

Position

the

cursor

using

one

of

the

methods

list

in

Table

3.

Table

3.

ResultSet

methods

for

positioning

a

scrollable

cursor

Method

Positions

the

cursor

first()

On

the

first

row

of

the

ResultSet

last()

On

the

last

row

of

the

ResultSet

next()1

On

the

next

row

of

the

ResultSet

previous()2

On

the

previous

row

of

the

ResultSet

absolute(int

n)3

If

n>0,

on

row

n

of

the

ResultSet.

If

n<0,

and

m

is

the

number

of

rows

in

the

ResultSet,

on

row

m+n+1

of

the

ResultSet.

relative(int

n)4,5

If

n>0,

on

the

row

that

is

n

rows

after

the

current

row.

If

n<0,

on

the

row

that

is

n

rows

before

the

current

row.

If

n=0,

on

the

current

row.

afterLast()

After

the

last

row

in

the

ResultSet

beforeFirst()

Before

the

first

row

in

the

ResultSet

48

Application

Programming

Guide

and

Reference

for

Java™

Table

3.

ResultSet

methods

for

positioning

a

scrollable

cursor

(continued)

Method

Positions

the

cursor

Notes:

1.

If

the

cursor

is

before

the

first

row

of

the

ResultSet,

this

method

positions

the

cursor

on

the

first

row.

2.

If

the

cursor

is

after

the

last

row

of

the

ResultSet,

this

method

positions

the

cursor

on

the

last

row.

3.

If

the

absolute

value

of

n

is

greater

than

the

number

of

rows

in

the

result

set,

this

method

positions

the

cursor

after

the

last

row

if

n

is

positive,

or

before

the

first

row

if

n

is

negative.

4.

The

cursor

must

be

on

a

valid

row

of

the

ResultSet

before

you

can

use

this

method.

If

the

cursor

is

before

the

first

row

or

after

the

last

throw,

the

method

throws

an

SQLException.

5.

Suppose

that

m

is

the

number

of

rows

in

the

ResultSet

and

x

is

the

current

row

number

in

the

ResultSet.

If

n>0

and

x+n>m,

the

driver

positions

the

cursor

after

the

last

row.

If

n<0

and

x+n<1,

the

driver

positions

the

cursor

before

the

first

row.

b.

If

you

need

to

know

the

current

cursor

position,

use

the

getRow,

isFirst,

isLast,

isBeforeFirst,

or

isAfterLast

method

to

obtain

this

information.

c.

If

you

specified

a

resultSetType

value

of

TYPE_SCROLL_SENSITIVE

in

step

1

on

page

47,

and

you

need

to

see

the

latest

values

of

the

current

row,

invoke

the

refreshRow

method.

Recommendation:

Because

refreshing

the

rows

of

a

ResultSet

can

have

a

detrimental

effect

on

the

performance

of

your

applications,

you

should

invoke

refreshRow

only

when

you

need

to

see

the

latest

data.

d.

Perform

one

or

more

of

the

following

operations:

v

To

retrieve

data

from

each

column

of

the

current

row

of

the

ResultSet

object,

use

getXXX

methods.

v

To

update

the

current

row

from

the

underlying

table,

use

updateXXX

methods

to

assign

column

values

to

the

current

row

of

the

ResultSet.

Then

use

updateRow

to

update

the

corresponding

row

of

the

underlying

table.

If

you

decide

that

you

do

not

want

to

update

the

underlying

table,

invoke

the

cancelRowUpdates

method

instead

of

the

updateRow

method.

The

resultSetConcurrency

value

for

the

ResultSet

must

be

CONCUR_UPDATABLE

for

you

to

use

these

methods.

v

To

delete

the

current

row

from

the

underlying

table,

use

the

deleteRow

method.

Invoking

deleteRow

causes

the

driver

to

replace

the

current

row

of

the

ResultSet

with

a

hole.

The

resultSetConcurrency

value

for

the

ResultSet

must

be

CONCUR_UPDATABLE

for

you

to

use

this

method.

5.

Invoke

the

close

method

to

close

the

ResultSet

object.

6.

Invoke

the

close

method

to

close

the

Statement

or

PreparedStatement

object.

For

example,

the

following

code

demonstrates

how

to

retrieve

all

rows

from

the

employee

table

in

reverse

order,

and

update

the

phone

number

for

employee

number

″000010″.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Chapter

2.

JDBC

application

programming

49

Creating

and

deploying

DataSource

objects

JDBC

versions

starting

with

version

2.0

provide

the

DataSource

interface

for

connecting

to

a

data

source.

Using

the

DataSource

interface

is

the

preferred

way

to

connect

to

a

data

source.

Using

the

DataSource

interface

involves

two

parts:

v

Creating

and

deploying

DataSource

objects.

This

is

usually

done

by

a

system

administrator,

using

a

tool

such

as

WebSphere®

Application

Server.

v

Using

the

DataSource

objects

to

create

a

connection.

This

is

done

in

the

application

program.

This

topic

contains

information

that

you

need

if

you

create

and

deploy

the

DataSource

objects

yourself.

The

DB2

Universal

JDBC

Driver

provides

the

following

DataSource

implementations:

v

com.ibm.db2.jcc.DB2SimpleDataSource,

which

does

not

support

connection

pooling.

You

can

use

this

implementation

with

Universal

Driver

type

2

connectivity

or

Universal

Driver

type

4

connectivity.

v

com.ibm.db2.jcc.DB2XADataSource,

which

supports

connection

pooling

and

distributed

transactions.

The

connection

pooling

is

provided

by

WebSphere

Application

Server

or

another

application

server.

You

can

use

this

implementation

only

with

Universal

Driver

type

4

connectivity.

The

JDBC/SQLJ

Driver

for

OS/390®

provides

the

following

DataSource

implementations:

v

com.ibm.db2.jcc.DB2SimpleDataSource,

which

does

not

contain

built-in

connection

pooling.

String

s;

Connection

con;

Statement

stmt;

ResultSet

rs;

...

stmt

=

con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

�1�

//

Create

a

Statement

object

//

for

a

scrollable,

updatable

//

ResultSet

rs

=

stmt.executeQuery("SELECT

EMPNO

FROM

EMPLOYEE

FOR

UPDATE

OF

PHONENO");

//

Create

the

ResultSet

�3�

rs.afterLast();

//

Position

the

cursor

at

the

end

of

//

the

ResultSet

�4a�

while

(rs.previous())

{

//

Position

the

cursor

backward

s

=

rs.getString("EMPNO");

//

Retrieve

the

employee

number

�4d�

//

(column

1

in

the

result

//

table)

System.out.println("Employee

number

=

"

+

s);

//

Print

the

column

value

if

(s.compareTo("000010")

==

0)

{

//

Look

for

employee

000010

updateString("PHONENO","4657");

//

Update

their

phone

number

updateRow();

//

Update

the

row

}

}

rs.close();

//

Close

the

ResultSet

�5�

stmt.close();

//

Close

the

Statement

�6�

Figure

28.

Using

a

scrollable

cursor

50

Application

Programming

Guide

and

Reference

for

Java™

Because

CICS®

does

contain

built-in

connection

pooling,

you

need

to

use

this

class

for

CICS

applications.

v

com.ibm.db2.jcc.DB2DataSource,

which

contains

built-in

connection

pooling.

See

Chapter

9,

“JDBC

and

SQLJ

connection

pooling

support,”

on

page

251

for

a

discussion

of

connection

pooling.

When

you

create

and

deploy

a

DataSource

object,

you

need

to

perform

these

tasks:

1.

Create

an

instance

of

the

appropriate

DataSource

implementation.

2.

Set

the

properties

of

the

DataSource

object.

3.

Register

the

object

with

the

Java™

Naming

and

Directory

Interface

(JNDI)

naming

service.

The

example

in

Figure

29

shows

how

to

perform

these

tasks.

�1�

Creates

an

instance

of

the

DB2SimpleDataSource

class.

�2�

This

statement

and

the

next

three

statements

set

values

for

properties

of

this

DB2SimpleDataSource

object.

�3�

Creates

a

context

for

use

by

JNDI.

�4�

Associates

DBSimple2DataSource

object

db2ds

with

the

logical

name

jdbc/sampledb.

An

application

that

uses

this

object

can

refer

to

it

by

the

name

jdbc/sampledb.

Providing

extended

client

information

to

the

DB2

server

with

the

DB2

Universal

JDBC

Driver

The

DB2

Universal

JDBC

Driver

provides

DB2-only

methods

that

you

can

use

to

provide

extra

information

about

the

client

to

the

server.

This

information

can

be

used

for

accounting

or

workload

management.

The

information

is

sent

to

the

DB2

server

when

the

application

performs

an

action

that

accesses

the

server,

such

as

executing

SQL.

The

methods

are

listed

in

Table

4.

Table

4.

Methods

that

provide

client

information

to

the

DB2

server

Method

Information

provided

setDB2ClientUser

User

name

for

a

connection

setDB2ClientWorkstation

Client

workstation

name

for

a

connection

import

java.sql.*;

//

JDBC

base

import

javax.naming.*;

//

JNDI

Naming

Services

import

javax.sql.*;

//

JDBC

2.0

standard

extension

APIs

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

//

standard

extension

APIs

DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

�1�

db2ds.setDatabaseName("db2loc1");

�2�

db2ds.setDescription("Our

Sample

Database");

db2ds.setUser("john");

db2ds.setPassword("db2");

...
Context

ctx=new

InitialContext();

�3�

Ctx.bind("jdbc/sampledb",db2ds);

�4�

Figure

29.

Example

of

creating

and

deploying

a

DataSource

object

Chapter

2.

JDBC

application

programming

51

|

|

|
|
|
|
|

|

||

||

||

||

Table

4.

Methods

that

provide

client

information

to

the

DB2

server

(continued)

Method

Information

provided

setDB2ClientApplicationInformation

Name

of

the

application

that

is

working

with

a

connection

setDB2ClientAccountingInformation

Accounting

information

To

set

the

extended

information:

1.

Create

a

Connection.

2.

Cast

the

java.sql.Connection

object

to

a

com.ibm.db2.jcc.DB2Connection.

3.

Call

any

of

the

methods

shown

in

Table

4

on

page

51.

4.

Execute

an

SQL

statement

to

cause

the

information

to

be

sent

to

the

DB2

server.

The

following

code

performs

the

previous

steps

to

pass

a

user

name

and

a

workstation

name

to

the

DB2

server.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

public

class

ClientInfoTest

{

public

static

void

main(String[]

args)

{

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

try

{

Class.forName("com.ibm.db2.jcc.DB2Driver");

String

user

=

"db2adm";

String

password

=

"db2adm";

Connection

con

=

DriverManager.getConnection(url,

�1�

user,

password);

if

(conn

instanceof

DB2Connection)

{

DB2Connection

db2conn

=

(DB2Connection)

conn;

�2�

db2conn.setDB2ClientUser("Michael

L

Thompson");

�3�

db2conn.setDB2ClientWorkstation("sjwkstn1");

//

Execute

SQL

to

force

extended

client

information

to

be

sent

//

to

the

server

conn.prepareStatement("SELECT

*

FROM

SYSIBM.SYSDUMMY1"

+

"WHERE

0

=

1").executeQuery();

�4�

}

}

catch

(Throwable

e)

{

e.printStackTrace();

}

}

}

Figure

30.

Example

of

passing

extended

client

information

to

a

DB2

server

52

Application

Programming

Guide

and

Reference

for

Java™

|

||

||
|

||
|

|
|
|
|
|
|

|
|
|
|

Chapter

3.

SQLJ

application

programming

The

following

topics

explain

DB2

UDB

for

z/OS

SQLJ

application

support:

v

“Basic

SQLJ

application

programming

concepts”

v

“Advanced

SQLJ

application

programming

concepts”

on

page

78

Basic

SQLJ

application

programming

concepts

The

following

topics

contain

basic

information

about

writing

SQLJ

applications:

v

“Basic

steps

in

writing

an

SQLJ

application”

v

“Java

packages

for

SQLJ

support”

on

page

56

v

“Variables

in

SQLJ

applications”

on

page

56

v

“Comments

in

an

SQLJ

application”

on

page

58

v

“Connecting

to

a

data

source

using

SQLJ”

on

page

58

v

“Setting

the

isolation

level

for

an

SQLJ

transaction”

on

page

63

v

“Committing

or

rolling

back

SQLJ

transactions”

on

page

64

v

“Savepoints

in

SQLJ

applications”

on

page

64

v

“Closing

the

connection

to

a

data

source

in

an

SQLJ

application”

on

page

65

v

“SQL

statements

in

an

SQLJ

application”

on

page

66

v

“Creating

and

modifying

DB2

objects

in

an

SQLJ

application”

on

page

66

v

“How

an

SQLJ

application

retrieves

data

from

DB2

tables”

on

page

66

v

“Using

a

named

iterator

in

an

SQLJ

application”

on

page

67

v

“Using

a

positioned

iterator

in

an

SQLJ

application”

on

page

69

v

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

71

v

“Multiple

open

iterators

for

the

same

SQL

statement

in

an

SQLJ

application”

on

page

74

v

“Multiple

open

instances

of

an

iterator

in

an

SQLJ

application”

on

page

76

v

“Calling

stored

procedures

in

an

SQLJ

application”

on

page

76

v

“Handling

SQL

errors

in

an

SQLJ

application”

on

page

77

v

“Handling

SQL

warnings

in

an

SQLJ

application”

on

page

78

Basic

steps

in

writing

an

SQLJ

application

Writing

a

SQLJ

application

has

much

in

common

with

writing

an

SQL

application

in

any

other

language:

In

general,

you

need

to

do

the

following

things:

v

Import

the

Java™

packages

that

contain

SQLJ

and

JDBC

methods.

v

Declare

variables

for

sending

data

to

or

retrieving

data

from

DB2®

tables.

v

Connect

to

a

data

source.

v

Execute

SQL

statements.

v

Handle

SQL

errors

and

warnings.

v

Disconnect

from

the

data

source.

Although

the

tasks

that

you

need

to

perform

are

similar

to

those

in

other

languages,

the

way

that

you

execute

those

tasks,

and

the

order

in

which

you

execute

those

tasks,

is

somewhat

different.

Figure

31

on

page

54

is

a

simple

program

that

demonstrates

each

task.

©

Copyright

IBM

Corp.

1998,

2004

53

import

sqlj.runtime.*;

�1�

import

java.sql.*;

#sql

context

EzSqljCtx;

�3a�

#sql

iterator

EzSqljNameIter

(String

LASTNAME);

�4a�

public

class

EzSqlj

{

public

static

void

main(String

args[])

throws

SQLException

{

EzSqljCtx

ctx

=

null;

String

URLprefix

=

"jdbc:db2:";

String

url;

url

=

new

String(URLprefix

+

args[0]);

//

Location

name

is

an

input

parameter

String

hvmgr="000010";

�2�

String

hvdeptno="A00";

try

{

�3b�

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(Exception

e)

{

throw

new

SQLException("Error

in

EzSqlj:

Could

not

load

the

driver");

}

try

{

System.out.println("About

to

connect

using

url:

"

+

url);

Connection

con0

=

DriverManager.getConnection(url);

�3c�

//

Create

a

JDBC

Connection

con0.setAutoCommit(false);

//

set

autocommit

OFF

ctx

=

new

EzSqljCtx(con0);

�3d�

try

{

EzSqljNameIter

iter;

int

count=0;

#sql

[ctx]

iter

=

{SELECT

LASTNAME

FROM

EMPLOYEE};

�4b�

//

Create

result

table

of

the

SELECT

while

(iter.next())

{

�4c�

System.out.println(iter.LASTNAME());

//

Retrieve

rows

from

result

table

count++;

}

System.out.println("Retrieved

"

+

count

+

"

rows

of

data");

}

Figure

31.

Simple

SQLJ

application

(Part

1

of

2)

54

Application

Programming

Guide

and

Reference

for

Java™

Notes

to

Figure

31

on

page

54:

�1�

These

statements

import

the

java.sql

package,

which

contains

the

JDBC

core

API,

and

the

sqlj.runtime

package,

which

contains

the

SQLJ

API.

For

information

on

other

packages

or

classes

that

you

might

need

to

access,

see

“Java

packages

for

SQLJ

support”

on

page

56.

�2�

String

variables

hvmgr

and

hvdeptno

are

host

identifiers,

which

are

equivalent

to

DB2

host

variables.

See

“Variables

in

SQLJ

applications”

on

page

56

for

more

information.

catch(

SQLException

e

)

�5�

{

System.out.println

("****

SELECT

SQLException...");

while(e!=null)

{

System.out.println

("Error

msg:

"

+

e.getMessage());

System.out.println

("SQLSTATE:

"

+

e.getSQLState());

System.out.println

("Error

code:

"

+

e.getErrorCode());

e

=

e.getNextException();

//

Check

for

chained

exceptions

}

}

catch(

Exception

e

)

{

System.out.println("****

NON-SQL

exception

=

"

+

e);

e.printStackTrace();

}

try

{

#sql

[ctx]

�4d�

{UPDATE

DEPARTMENT

SET

MGRNO=:hvmgr

WHERE

DEPTNO=:hvdeptno};

//

Update

data

for

one

department

�6�

#sql

[ctx]

{COMMIT};

//

Commit

the

update

}

catch(

SQLException

e

)

{

System.out.println

("****

UPDATE

SQLException...");

System.out.println

("Error

msg:

"

+

e.getMessage()

+

".

SQLSTATE="

+

e.getSQLState()

+

"

Error

code="

+

e.getErrorCode());

e.printStackTrace();

}

catch(

Exception

e

)

{

System.out.println("****

NON-SQL

exception

=

"

+

e);

e.printStackTrace();

}

iter.close();

//

Close

the

iterator

ctx.close();

�7�

}

catch(SQLException

e)

{

System.out.println

("****

SQLException

...");

System.out.println

("Error

msg:

"

+

e.getMessage()

+

".

SQLSTATE="

+

e.getSQLState()

+

"

Error

code="

+

e.getErrorCode());

e.printStackTrace();

}

catch(Exception

e)

{

System.out.println

("****

NON-SQL

exception

=

"

+

e);

e.printStackTrace();

}

}

Figure

31.

Simple

SQLJ

application

(Part

2

of

2)

Chapter

3.

SQLJ

application

programming

55

�3a�,

�3b�,

�3c�,

and

�3d�

These

statements

demonstrate

how

to

connect

to

a

data

source

using

one

of

the

three

available

techniques.

See

“Connecting

to

a

data

source

using

SQLJ”

on

page

58

for

more

details.

�4a�

,

�4b�,

�4c�,

and

�4d�

These

statements

demonstrate

how

to

execute

SQL

statements

in

SQLJ.

Statement

4a

demonstrates

the

SQLJ

equivalent

of

declaring

an

SQL

cursor.

Statements

4b

and

4c

show

one

way

of

doing

the

SQLJ

equivalent

of

executing

SQL

FETCHes.

Statement

4d

shows

how

to

do

the

SQLJ

equivalent

of

performing

an

SQL

UPDATE.

For

more

information,

see

“SQL

statements

in

an

SQLJ

application”

on

page

66.

�5�

This

try/catch

block

demonstrates

the

use

of

the

SQLException

class

for

SQL

error

handling.

For

more

information

on

handling

SQL

errors,

see

“Handling

SQL

errors

in

an

SQLJ

application”

on

page

77.

For

more

information

on

handling

SQL

warnings,

see

“Handling

SQL

warnings

in

an

SQLJ

application”

on

page

78.

�6�

This

is

an

example

of

a

comment.

For

rules

on

including

comments

in

SQLJ

programs,

see

“Comments

in

an

SQLJ

application”

on

page

58.

�7�

This

statement

closes

the

connection

to

the

data

source.

See

“Closing

the

connection

to

a

data

source

in

an

SQLJ

application”

on

page

65.

Java

packages

for

SQLJ

support

Before

you

can

execute

SQLJ

statements

or

invoke

JDBC

methods

in

your

SQLJ

program,

you

need

to

be

able

to

access

all

or

parts

of

various

Java™

packages

that

contain

support

for

those

statements.

You

can

do

that

either

by

importing

the

packages

or

specific

classes,

or

by

using

fully-qualified

class

names.

You

might

need

the

following

packages

or

classes

for

your

SQLJ

program:

sqlj.runtime

Contains

the

SQLJ

run-time

API.

java.sql

Contains

the

core

JDBC

API.

com.ibm.db2.jcc

Contains

the

DB2®-specific

implementation

of

JDBC

and

SQLJ.

COM.ibm.db2os390.sqlj.jdbc

Contains

classes

and

interfaces

that

are

specific

to

the

JDBC/SQLJ

Driver

for

OS/390.

javax.naming

Contains

classes

and

interfaces

for

Java

Naming

and

Directory

Interface

(JNDI),

which

is

often

used

for

implementing

a

DataSource.

javax.sql

Contains

JDBC

2.0

standard

extensions.

Variables

in

SQLJ

applications

In

DB2®

programs

in

other

languages,

you

use

host

variables

to

pass

data

between

the

application

program

and

DB2.

In

SQLJ

programs,

you

use

host

expressions.

A

host

expression

can

be

a

simple

Java™

identifier,

or

it

can

be

a

complex

expression.

Every

host

expression

must

start

with

a

colon

when

it

is

used

in

an

SQL

statement.

Host

expressions

are

case

sensitive.

For

the

JDBC/SQLJ

2.0

Driver

for

OS/390,

a

Java

identifier

in

a

host

expression

can

have

any

of

the

data

types

listed

in

the

Java

data

type

column

of

“Java,

JDBC,

and

SQL

data

types”

on

page

101,

except

for

Blob

or

Clob.

For

the

DB2

Universal

JDBC

Driver,

a

Java

identifier

can

have

any

of

the

data

types

listed

in

the

Java

data

type

column

of

“Java,

JDBC,

and

SQL

data

types”

on

page

101.

Data

types

that

are

56

Application

Programming

Guide

and

Reference

for

Java™

specified

in

an

iterator

can

be

any

of

the

types

in

the

Java

data

type

column

of

“Java,

JDBC,

and

SQL

data

types”

on

page

101.

A

complex

expression

is

an

array

element

or

Java

expression

that

evaluates

to

a

single

value.

A

complex

expression

in

an

SQLJ

clause

must

be

surrounded

by

parentheses.

The

following

examples

demonstrate

how

to

use

host

expressions.

Example:

Declaring

a

Java

identifier

and

using

it

in

a

SELECT

statement:

In

this

example,

the

statement

that

begins

with

#sql

has

the

same

function

as

a

SELECT

statement

in

other

languages.

This

statement

assigns

the

last

name

of

the

employee

with

employee

number

000010

to

Java

identifier

empname.

String

empname;

...

#sql

[ctxt]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

Example:

Declaring

a

Java

identifier

and

using

it

in

a

stored

procedure

call:

In

this

example,

the

statement

that

begins

with

#sql

has

the

same

function

as

an

SQL

CALL

statement

in

other

languages.

This

statement

uses

Java

identifier

empno

as

an

input

parameter

to

stored

procedure

A.

The

value

IN,

which

precedes

empno,

specifies

that

empno

is

an

input

parameter.

The

qualifier

that

indicates

how

the

parameter

is

used

(IN,

OUT,

or

INOUT)

must

match

the

corresponding

value

in

the

parameter

definition

that

you

specified

in

the

CREATE

PROCEDURE

statement

for

the

stored

procedure.

String

empno

=

"0000010";

...

#sql

[ctxt]

{CALL

A

(:IN

empno)};

Example:

Using

a

complex

expression

as

a

host

identifier:

This

example

uses

complex

expression

(((int)yearsEmployed++/5)*500)

as

a

host

expression.

#sql

[ctxt]

{UPDATE

EMPLOYEE

SET

BONUS=:(((int)yearsEmployed++/5)*500)

WHERE

EMPNO=:empID};

SQLJ

performs

the

following

actions

when

it

processes

a

complex

host

expression:

v

Evaluates

the

host

expression

from

left

to

right

before

assigning

its

value

to

DB2.

v

Evaluates

side

effects,

such

as

operations

with

postfix

operators,

according

to

normal

Java

rules.

All

host

expressions

are

fully

evaluated

before

any

of

their

values

are

passed

to

DB2.

v

Uses

Java

rules

for

rounding

and

truncation.

Therefore,

if

the

value

of

yearsEmployed

is

6

before

the

UPDATE

statement

is

executed,

the

value

that

is

assigned

to

column

BONUS

by

the

UPDATE

statement

is

((int)6/5)*500,

or

500.

After

500

is

assigned

to

BONUS,

the

value

of

yearsEmployed

is

incremented.

Restrictions

on

variable

names:

Two

strings

have

special

meanings

in

SQLJ

programs.

Observe

the

following

restrictions

when

you

use

these

strings

in

your

SQLJ

programs:

v

The

string

__sJT_

is

a

reserved

prefix

for

variable

names

that

are

generated

by

SQLJ.

Do

not

begin

the

following

types

of

names

with

__sJT_:

Chapter

3.

SQLJ

application

programming

57

|
|

–

Host

expression

names

–

Java

variable

names

that

are

declared

in

blocks

that

include

executable

SQL

statements

–

Names

of

parameters

for

methods

that

contain

executable

SQL

statements

–

Names

of

fields

in

classes

that

contain

executable

SQL

statements,

or

in

classes

with

subclasses

or

enclosed

classes

that

contain

executable

SQL

statements

v

The

string

_SJ

is

a

reserved

suffix

for

resource

files

and

classes

that

are

generated

by

SQLJ.

Avoid

using

the

string

_SJ

in

class

names

and

input

source

file

names.

Comments

in

an

SQLJ

application

To

document

your

program,

you

need

to

include

comments.

To

do

that,

use

Java™

comments.

Java

comments

are

denoted

by

/*

*/

or

//.

You

can

include

Java

comments

outside

SQLJ

clauses,

wherever

the

Java

language

permits

them.

Within

an

SQLJ

clause,

you

can

use

Java

comments

only

within

host

expressions.

Connecting

to

a

data

source

using

SQLJ

In

an

SQLJ

application,

as

in

any

other

DB2®

application,

you

must

be

connected

to

a

database

server

before

you

can

execute

SQL

statements.

In

SQLJ,

as

in

JDBC,

a

database

server

is

called

a

data

source.

You

can

use

one

of

five

techniques

to

connect

to

a

data

source:

v

Explicitly

create

a

connection

using

the

JDBC

DriverManager

interface.

There

are

two

techniques

for

doing

this.

v

Explicitly

create

a

connection

using

the

JDBC

DataSource

interface.

There

are

two

techniques

for

doing

this.

v

Implicitly

create

a

connection.

Connection

technique

1:

This

technique

uses

the

JDBC

DriverManager

as

the

underlying

means

for

creating

the

connection.

Use

it

with

any

level

of

the

JDBC

driver.

1.

Execute

an

SQLJ

connection

declaration

clause.

Doing

this

generates

a

connection

context

class.

The

simplest

form

of

the

connection

declaration

clause

is:

#sql

context

context-class-name;

The

name

of

the

generated

connection

context

class

is

context-class-name.

2.

Load

a

JDBC

driver

by

invoking

the

Class.forName

method:

v

For

the

DB2

Universal

JDBC

Driver,

invoke

Class.forName

this

way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

v

For

the

JDBC/SQLJ

Driver

for

OS/390,

invoke

Class.forName

this

way:

Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");

3.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

one

of

the

following

forms:

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

boolean

autocommit);

58

Application

Programming

Guide

and

Reference

for

Java™

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

String

user,

String

password,

boolean

autocommit);

connection-context-class

connection-context-object=

new

connection-context-class(String

url,

Properties

info,

boolean

autocommit);

The

meanings

of

the

parameters

are:

url

A

string

that

specifies

the

location

name

that

is

associated

with

the

data

source.

That

argument

has

one

of

the

forms

that

are

specified

in

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

8

or

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

a

JDBC/SQLJ

Driver

for

OS/390”

on

page

10.

The

form

depends

on

which

JDBC

driver

you

are

using.

user

and

password

Specify

a

user

ID

and

password

for

connection

to

the

data

source,

if

the

data

source

to

which

you

are

connecting

requires

them.

If

the

data

source

is

a

DB2

UDB

for

OS/390®

or

z/OS™

system,

and

you

do

not

specify

these

parameters,

DB2

uses

the

external

security

environment,

such

as

the

RACF®

security

environment,

that

was

previously

established

for

the

user.

For

a

CICS®

connection,

you

cannot

specify

a

user

ID

or

password.

info

Specifies

an

object

of

type

java.util.Properties

that

contains

a

set

of

driver

properties

for

the

connection.

For

the

JDBC/SQLJ

driver

for

z/OS,

you

should

specify

only

the

user

and

password

properties.

For

the

DB2

Universal

JDBC

Driver,

you

can

specify

any

of

the

properties

listed

in

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106.

autocommit

Specifies

whether

you

want

the

database

manager

to

issue

a

COMMIT

after

every

statement.

Possible

values

are

true

or

false.

If

you

specify

false,

you

need

to

do

explicit

commit

operations.

The

following

code

uses

connection

technique

1

to

create

a

connection

to

location

NEWYORK.

The

connection

requires

a

user

ID

and

password,

and

does

not

require

autocommit.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Chapter

3.

SQLJ

application

programming

59

Connection

technique

2:

This

technique

uses

the

JDBC

DriverManager

interface

for

creating

the

connection.

Use

it

with

any

level

of

the

JDBC

driver.

1.

Execute

an

SQLJ

connection

declaration

clause.

This

is

the

same

as

step

1

on

page

58

in

connection

technique

1.

2.

Load

the

driver.

This

is

the

same

as

step

2

on

page

58

in

connection

technique

1.

3.

Invoke

the

JDBC

DriverManager.getConnection

method.

Doing

this

creates

a

JDBC

connection

object

for

the

connection

to

the

data

source.

You

can

use

any

of

the

forms

of

getConnection

that

are

specified

in

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

8.

The

meanings

of

the

url,

user,

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

58

of

connection

technique

1.

4.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

the

following

form:

connection-context-class

connection-context-object=

new

connection-context-class(Connection

JDBC-connection-object);

The

JDBC-connection-object

parameter

is

the

Connection

object

that

you

created

in

step

3.

The

following

code

uses

connection

technique

2

to

create

a

connection

to

location

NEWYORK.

The

connection

requires

a

user

ID

and

password,

and

does

not

require

autocommit.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

#sql

context

Ctx;

//

Create

connection

context

class

Ctx

�1�

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

try

{

//

Load

the

JDBC

driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

�2�

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Ctx

myConnCtx=

�3�

new

Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

userid,password,false);

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

NEWYORK

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

32.

Using

connection

technique

1

to

connect

to

a

data

source

60

Application

Programming

Guide

and

Reference

for

Java™

Connection

technique

3:

This

technique

uses

the

JDBC

DataSource

interface

for

creating

the

connection.

Use

this

technique

only

if

your

JDBC

driver

is

a

JDBC

2.0

driver.

1.

Execute

an

SQLJ

connection

declaration

clause.

This

is

the

same

as

step

1

on

page

58

in

connection

technique

1.

2.

If

your

system

administrator

created

a

DataSource

object

in

a

different

program:

a.

Obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

b.

Create

a

context

to

use

in

the

next

step.

c.

In

your

application

program,

use

the

Java™

Naming

and

Directory

Interface

(JNDI)

to

get

the

DataSource

object

that

is

associated

with

the

logical

data

source

name.

Otherwise,

create

a

DataSource

object

and

assign

properties

to

it,

as

shown

in

″Creating

and

using

a

data

source

in

the

same

application″

in

“Connecting

to

a

data

source

using

the

DataSource

interface”

on

page

12.

3.

Invoke

the

JDBC

DataSource.getConnection

method.

Doing

this

creates

a

JDBC

connection

object

for

the

connection

to

the

data

source.

You

can

one

of

the

following

forms

of

getConnection:

getConnection();

getConnection(user,

password);

The

meanings

of

user

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

58

of

connection

technique

1.

4.

If

the

default

autocommit

mode

is

not

appropriate,

invoke

the

JDBC

Connection.setAutoCommit

method.

Doing

this

indicates

whether

you

want

the

database

manager

to

issue

a

COMMIT

after

every

statement.

The

form

of

this

method

is:

setAutoCommit(boolean

autocommit);

For

environments

other

than

the

environments

for

CICS,

stored

procedures,

and

user-defined

functions,

the

default

autocommit

mode

for

a

JDBC

connection

is

true.

To

disable

autocommit,

invoke

setAutoCommit(false).

#sql

context

Ctx;

//

Create

connection

context

class

Ctx

�1�

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

try

{

//

Load

the

JDBC

driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

�2�

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

jdbccon=

�3�

DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

userid,password);

//

Create

JDBC

connection

object

jdbccon

jdbccon.setAutoCommit(false);

//

Do

not

autocommit

�4�

Ctx

myConnCtx=new

Ctx(jdbccon);

�5�

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

NEWYORK

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

33.

Using

connection

technique

2

to

connect

to

a

data

source

Chapter

3.

SQLJ

application

programming

61

5.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

1

on

page

61.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

the

following

form:

connection-context-class

connection-context-object=

new

connection-context-class(Connection

JDBC-connection-object);

The

JDBC-connection-object

parameter

is

the

Connection

object

that

you

created

in

step

3

on

page

61.

The

following

code

uses

connection

technique

3

to

create

a

connection

to

a

location

with

logical

name

jdbc/sampledb.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Connection

technique

4

(DB2

Universal

JDBC

Driver

only):

This

technique

uses

the

JDBC

DataSource

interface

for

creating

the

connection.

This

technique

requires

that

the

DataSource

is

registered

with

JNDI.

1.

From

your

system

administrator,

obtain

the

logical

name

of

the

data

source

to

which

you

need

to

connect.

2.

Execute

an

SQLJ

connection

declaration

clause.

For

this

type

of

connection,

the

connection

declaration

clause

needs

to

be

of

this

form:

#sql

public

static

context

context-class-name

with

(dataSource="logical-name");

The

connection

context

must

be

declared

as

public

and

static.

logical-name

is

the

data

source

name

that

you

obtained

in

step

1.

3.

Invoke

the

constructor

for

the

connection

context

class

that

you

created

in

step

2.

Doing

this

creates

a

connection

context

object

that

you

specify

in

each

SQL

statement

that

you

execute

at

the

associated

data

source.

The

constructor

invocation

statement

needs

to

be

in

one

of

the

following

forms:

connection-context-class

connection-context-object=

new

connection-context-class();

connection-context-class

connection-context-object=

new

connection-context-class

(String

user,

String

password);

import

java.sql.*;

import

javax.naming.*;

import

javax.sql.*;

...

#sql

context

CtxSqlj;

//

Create

connection

context

class

CtxSqlj

�1�

Context

ctx=new

InitialContext();

�2b�

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

�2c�

Connection

con=ds.getConnection();

�3�

String

empname;

//

Declare

a

host

variable

...

con.setAutoCommit(false);

//

Do

not

autocommit

�4�

CtxSqlj

myConnCtx=new

CtxSqlj(con);

�5�

//

Create

connection

context

object

myConnCtx

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

34.

Using

connection

technique

3

to

connect

to

a

data

source

62

Application

Programming

Guide

and

Reference

for

Java™

The

meanings

of

the

user

and

password

parameters

are

the

same

as

the

meanings

of

the

parameters

in

step

3

on

page

58

of

connection

technique

1.

The

following

code

uses

connection

technique

4

to

create

a

connection

to

a

location

with

logical

name

jdbc/sampledb.

The

connection

requires

a

user

ID

and

password.

Connection

technique

5:

This

technique

uses

the

default

connection

to

connect

to

the

data

source.

You

use

the

default

connection

by

specifying

your

SQL

statements

without

a

connection

context

object.

When

you

use

this

technique,

you

do

not

need

to

load

a

JDBC

driver

unless

you

explicitly

use

JDBC

interfaces

in

your

program.

For

example:

#sql

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

default

connection

for

//

executing

an

SQL

statement

To

create

a

default

connection

context,

SQLJ

does

a

JNDI

lookup

for

jdbc/defaultDataSource.

If

nothing

is

registered,

a

null

context

exception

is

issued

when

SQLJ

attempts

to

access

the

context.

In

a

stored

procedure

that

runs

on

DB2

UDB

in

the

OS/390

or

z/OS

environment,

or

for

a

CICS

or

IMS

application,

when

you

use

the

default

connection,

DB2

uses

the

implicit

connection.

Setting

the

isolation

level

for

an

SQLJ

transaction

To

set

the

isolation

level

for

a

unit

of

work

within

an

SQLJ

program,

use

the

SET

TRANSACTION

ISOLATION

LEVEL

clause.

Table

5

shows

the

values

that

you

can

specify

in

the

SET

TRANSACTION

ISOLATION

LEVEL

clause

and

their

DB2®

equivalents.

Table

5.

Equivalent

SQLJ

and

DB2

isolation

levels

SET

TRANSACTION

value

DB2

isolation

level

SERIALIZABLE

Repeatable

read

REPEATABLE

READ

Read

stability

READ

COMMITTED

Cursor

stability

READ

UNCOMMITTED

Uncommitted

read

#sql

public

static

context

Ctx

with

(dataSource="jdbc/sampledb");

�2�

//

Create

connection

context

class

Ctx

String

userid="dbadm";

//

Declare

variables

for

user

ID

and

password

String

password="dbadm";

String

empname;

//

Declare

a

host

variable

...

Ctx

myConnCtx=new

Ctx(userid,

password);

�3�

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

jdbc/sampledb

#sql

[myConnCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

//

Use

myConnCtx

for

executing

an

SQL

statement

Figure

35.

Using

connection

technique

4

to

connect

to

a

data

source

Chapter

3.

SQLJ

application

programming

63

The

isolation

level

affects

the

underlying

JDBC

connection

as

well

as

the

SQLJ

connection.

You

can

change

the

isolation

level

only

at

the

beginning

of

a

transaction.

Committing

or

rolling

back

SQLJ

transactions

If

you

disable

autocommit

for

an

SQLJ

connection,

you

need

to

perform

explicit

commit

or

rollback

operations.

You

do

this

using

execution

clauses

that

contain

the

SQL

COMMIT

or

ROLLBACK

statements:

#sql

[myConnCtx]

{COMMIT};

#sql

[myConnCtx]

{ROLLBACK};

Savepoints

in

SQLJ

applications

An

SQL

savepoint

represents

the

state

of

data

and

schemas

at

a

particular

point

in

time

within

a

unit

of

work.

SQL

statements

exist

to

set

a

savepoint,

release

a

savepoint,

and

restore

data

and

schemas

to

the

state

that

the

savepoint

represents.

Under

the

DB2

Universal

JDBC

Driver,

you

can

include

any

form

of

the

SQL

SAVEPOINT

statement

in

your

SQLJ

program.

The

following

example

demonstrates

how

to

set

a

savepoint,

roll

back

to

the

savepoint,

and

release

the

savepoint.

64

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|

|
|

|
|
|

Closing

the

connection

to

a

data

source

in

an

SQLJ

application

When

you

have

finished

with

a

connection

to

a

data

source,

you

need

to

close

the

connection

to

the

data

source.

Doing

so

releases

the

connection

context

object’s

DB2®

and

SQLJ

resources

immediately.

To

close

the

connection

to

the

data

source,

use

the

ConnectionContext.close()

method.

This

closes

the

connection

context,

as

well

as

the

connection

to

the

data

source.

For

example:

...

ctx

=

new

EzSqljctx(con0);

//

Create

a

connection

context

object

//

from

JDBC

connection

con0

...

//

Perform

various

SQL

operations

EzSqljctx.close();

//

Close

the

connection

context

and

//

connection

to

the

data

source

#sql

context

Ctx;

//

Create

connection

context

class

Ctx

String

empNumVar;

int

shoeSizeVar;

...

try

{

//

Load

the

JDBC

driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

jdbccon=

DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

userid,password);

//

Create

JDBC

connection

object

jdbccon

jdbccon.setAutoCommit(false);

//

Do

not

autocommit

Ctx

ctxt=new

Ctx(jdbccon);

//

Create

connection

context

object

myConnCtx

//

for

the

connection

to

NEWYORK

#sql

[ctxt]

{CREATE

DISTINCT

TYPE

SHOESIZE

AS

INTEGER

WITH

COMPARISONS};

//

Create

a

distinct

type

#sql

[ctxt]

{COMMIT};

//

Commit

the

create

#sql

[ctxt]

{CREATE

TABLE

EMP_SHOE

(EMPNO

CHAR(6),

EMP_SHOE_SIZE

SHOESIZE)};

//

Create

table

with

distinct

type

#sql

[ctxt]

{COMMIT};

//

Commit

the

create

#sql

[ctxt]

{INSERT

INTO

EMP_SHOE

VALUES

(’000010’,

6)};

//

Insert

a

row

#sql

[ctxt]

{SAVEPOINT

SVPT1

ON

ROLLBACK

RETAIN

CURSORS};

//

Create

a

savepoint

...

#sql

[ctxt]

{INSERT

INTO

EMP_SHOE

VALUES

(’000020’,

10)};

//

Insert

another

row

#sql

[ctxt]

{ROLLBACK

TO

SAVEPOINT

SVPT1};

//

Roll

back

work

to

the

point

//

after

the

first

insert

...

#sql

[ctxt]

{RELEASE

SAVEPOINT

SVPT1};

//

Release

the

savepoint

ctx.close();

//

Close

the

connection

context

Figure

36.

Setting,

rolling

back

to,

and

releasing

a

savepoint

in

an

SQLJ

application

Chapter

3.

SQLJ

application

programming

65

SQL

statements

in

an

SQLJ

application

You

execute

SQL

statements

in

a

traditional

SQL

program

to

create

tables,

insert,

update,

and

delete

data

in

tables,

retrieve

data

from

the

tables,

call

stored

procedures,

or

commit

or

roll

back

transactions.

In

an

SQLJ

program,

you

also

execute

these

statements,

within

SQLJ

executable

clauses.

An

executable

clause

can

have

one

of

the

following

general

forms:

#sql

[connection-context]

{sql-statement};

#sql

[connection-context,execution-context]

{sql-statement};

#sql

[execution-context]

{sql-statement};

In

an

executable

clause,

you

should

always

specify

an

explicit

connection

context,

with

one

exception:

you

do

not

specify

an

explicit

connection

context

for

a

FETCH

statement.

You

include

an

execution

context

only

for

specific

cases.

See

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

88

for

information

about

when

you

need

an

execution

context.

For

complete

information

on

SQLJ

syntax,

see

“SQLJ

statement

reference”

on

page

133.

Creating

and

modifying

DB2

objects

in

an

SQLJ

application

Use

SQLJ

executable

clauses

to

do

the

following

things:

v

Execute

data

definition

statements

(CREATE,

ALTER,

DROP,

GRANT,

REVOKE)

v

Execute

INSERT,

searched

UPDATE,

and

searched

DELETE

statements

For

example,

the

following

executable

statements

demonstrate

an

INSERT,

a

searched

UPDATE,

and

a

searched

DELETE:

#sql

[myConnCtx]

{INSERT

INTO

DEPARTMENT

VALUES

("X00","Operations

2","000030","E01",NULL)};

#sql

[myConnCtx]

{UPDATE

DEPARTMENT

SET

MGRNO="000090"

WHERE

MGRNO="000030"};

#sql

[myConnCtx]

{DELETE

FROM

DEPARTMENT

WHERE

DEPTNO="X00"};

For

information

on

positioned

UPDATEs

and

DELETEs,

see

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

71.

How

an

SQLJ

application

retrieves

data

from

DB2

tables

Just

as

in

DB2®

applications

in

other

languages,

if

you

want

to

retrieve

a

single

row

from

a

DB2

table

in

an

SQLJ

application,

you

can

write

a

SELECT

INTO

statement

with

a

WHERE

clause

that

defines

a

result

table

that

contains

only

that

row:

#sql

[myConnCtx]

{SELECT

DEPTNO

INTO

:hvdeptno

FROM

DEPARTMENT

WHERE

DEPTNAME="OPERATIONS"};

However,

most

SELECT

statements

that

you

use

create

result

tables

that

contain

many

rows.

In

DB2

applications

in

other

languages,

you

use

a

cursor

to

select

the

individual

rows

from

the

result

table.

That

cursor

can

be

non-scrollable,

which

means

that

when

you

use

it

to

fetch

rows,

you

move

the

cursor

serially,

from

the

beginning

of

the

result

table

to

the

end.

Alternatively,

the

cursor

can

be

scrollable,

which

means

that

when

you

use

it

to

fetch

rows,

you

can

move

the

cursor

forward,

backward,

or

to

any

row

in

the

result

table.

The

SQLJ

equivalent

of

a

cursor

is

a

result

set

iterator.

Like

a

cursor,

a

result

set

iterator

can

be

non-scrollable

or

scrollable.

This

topic

discusses

how

to

use

non-scrollable

iterators.

For

information

on

using

scrollable

iterators,

see

“Using

scrollable

iterators

in

an

SQLJ

application”

on

page

96.

66

Application

Programming

Guide

and

Reference

for

Java™

A

result

set

iterator

is

a

Java™

object

that

you

use

to

retrieve

rows

from

a

result

table.

Unlike

a

cursor,

a

result

set

iterator

can

be

passed

as

a

parameter

to

a

method.

The

basic

steps

in

using

a

result

set

iterator

are:

1.

Declare

the

iterator,

which

results

in

an

iterator

class

2.

Define

an

instance

of

the

iterator

class.

3.

Assign

the

result

table

of

a

SELECT

to

an

instance

of

the

iterator.

4.

Retrieve

rows.

5.

Close

the

iterator.

There

are

two

types

of

iterators:

positioned

iterators

and

named

iterators.

Postitioned

iterators

extend

the

interface

sqlj.runtime.PositionedIterator.

Positioned

iterators

identify

the

columns

of

a

result

table

by

their

position

in

the

result

table.

Named

iterators

extend

the

interface

sqlj.runtime.NamedIterator.

Named

iterators

identify

the

columns

of

the

result

table

by

result

table

column

names.

Using

a

named

iterator

in

an

SQLJ

application

The

steps

in

using

a

named

iterator

are:

1.

Declare

the

iterator.

You

declare

any

result

set

iterator

using

an

iterator

declaration

clause.

This

causes

an

iterator

class

to

be

created

that

has

the

same

name

as

the

iterator.

For

a

named

iterator,

the

iterator

declaration

clause

specifies

the

following

information:

v

The

name

of

the

iterator

v

A

list

of

column

names

and

Java™

data

types

v

Information

for

a

Java

class

declaration,

such

as

whether

the

iterator

is

public

or

static

v

A

set

of

attributes,

such

as

whether

the

iterator

is

holdable,

or

whether

its

columns

can

be

updated

When

you

declare

a

named

iterator

for

a

query,

you

specify

names

for

each

of

the

iterator

columns.

Those

names

must

match

the

names

of

columns

in

the

result

table

for

the

query.

An

iterator

column

name

and

a

result

table

column

name

that

differ

only

in

case

are

considered

to

be

matching

names.

The

named

iterator

class

that

results

from

the

iterator

declaration

clause

contains

accessor

methods.

There

is

one

accessor

method

for

each

column

of

the

iterator.

Each

accessor

method

name

is

the

same

as

the

corresponding

iterator

column

name.

You

use

the

accessor

methods

to

retrieve

data

from

columns

of

the

result

table.

You

need

to

specify

Java

data

types

in

the

iterators

that

closely

match

the

corresponding

DB2®

column

data

types.

See

“Java,

JDBC,

and

SQL

data

types”

on

page

101

for

a

list

of

the

best

mappings

between

Java

data

types

and

DB2

data

types.

You

can

declare

an

iterator

in

a

number

of

ways.

However,

because

a

Java

class

underlies

each

iterator,

you

need

to

ensure

that

when

you

declare

an

iterator,

the

underlying

class

obeys

Java

rules.

For

example,

iterators

that

contain

a

with-clause

must

be

declared

as

public.

Therefore,

if

an

iterator

needs

to

be

public,

it

can

be

declared

only

where

a

public

class

is

allowed.

The

following

list

describes

some

alternative

methods

of

declaring

an

iterator:

v

As

public,

in

a

source

file

by

itself

Chapter

3.

SQLJ

application

programming

67

This

method

lets

you

use

the

iterator

declaration

in

other

code

modules,

and

provides

an

iterator

that

works

for

all

SQLJ

applications.

In

addition,

there

are

no

concerns

about

having

other

top-level

classes

or

public

classes

in

the

same

source

file.

v

As

a

top-level

class

in

a

source

file

that

contains

other

top-level

class

definitions

Java

allows

only

one

public,

top-level

class

in

a

code

module.

Therefore,

if

you

need

to

declare

the

iterator

as

public,

such

as

when

the

iterator

includes

a

with-clause,

no

other

classes

in

the

code

module

can

be

declared

as

public.

v

As

a

nested

static

class

within

another

class

Using

this

alternative

lets

you

combine

the

iterator

declaration

with

other

class

declarations

in

the

same

source

file,

declare

the

iterator

and

other

classes

as

public,

and

make

the

iterator

class

visible

to

other

code

modules

or

packages.

However,

when

you

reference

the

iterator

from

outside

the

nesting

class,

you

must

fully-qualify

the

iterator

name

with

the

name

of

the

nesting

class.

v

As

an

inner

class

within

another

class

When

you

declare

an

iterator

in

this

way,

you

can

instantiate

it

only

within

an

instance

of

the

nesting

class.

However,

you

can

declare

the

iterator

and

other

classes

in

the

file

as

public.

You

cannot

cast

a

JDBC

ResultSet

to

an

iterator

if

the

iterator

is

declared

as

an

inner

class.

This

restriction

does

not

apply

to

an

iterator

that

is

declared

as

a

static

nested

class.

See

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

79

for

more

information

on

casting

a

ResultSet

to

a

iterator.

2.

Create

an

instance

of

the

iterator

class.

You

declare

an

object

of

the

named

iterator

class

to

retrieve

rows

from

a

result

table.

3.

Assign

the

result

table

of

a

SELECT

to

an

instance

of

the

iterator.

To

assign

the

result

table

of

a

SELECT

to

an

iterator,

you

use

an

SQLJ

assignment

clause.

The

format

of

the

assignment

clause

for

a

named

iterator

is:

#sql

context-clause

iterator-object={select-statement};

See

“SQLJ

assignment-clause”

on

page

141

and

“SQLJ

context-clause”

on

page

138

for

more

information.

4.

Retrieve

rows.

Do

this

by

invoking

accessor

methods

in

a

loop.

Accessor

methods

have

the

same

names

as

the

corresponding

columns

in

the

iterator,

and

have

no

parameters.

An

accessor

method

returns

the

value

from

the

corresponding

column

of

the

current

row

in

the

result

table.

Use

the

NamedIterator.next()

method

to

move

the

cursor

forward

through

the

result

table.

To

test

whether

you

have

retrieved

all

rows,

check

the

value

that

is

returned

when

you

invoke

the

next

method.

next

returns

a

boolean

with

a

value

of

false

if

there

is

no

next

row.

5.

Close

the

iterator.

Use

the

NamedIterator.close

method

to

do

this.

The

following

code

demonstrates

how

to

declare

and

use

a

named

iterator.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

68

Application

Programming

Guide

and

Reference

for

Java™

Using

a

positioned

iterator

in

an

SQLJ

application

The

steps

in

using

a

positioned

iterator

are:

1.

Declare

the

iterator.

You

declare

any

result

set

iterator

using

an

iterator

declaration

clause.

This

causes

an

iterator

class

to

be

created

that

has

the

same

name

and

attributes

as

the

iterator.

For

a

positioned

iterator,

the

iterator

declaration

clause

specifies

the

following

information:

v

The

name

of

the

iterator

v

A

list

of

Java™

data

types

v

Information

for

a

Java

class

declaration,

such

as

whether

the

iterator

is

public

or

static

v

A

set

of

attributes,

such

as

whether

the

iterator

is

holdable,

or

whether

its

columns

can

be

updated

The

data

type

declarations

represent

columns

in

the

result

table

and

are

referred

to

as

columns

of

the

result

set

iterator.

The

columns

of

the

result

set

iterator

correspond

to

the

columns

of

the

result

table,

in

left-to-right

order.

For

example,

if

an

iterator

declaration

clause

has

two

data

type

declarations,

the

first

data

type

declaration

corresponds

to

the

first

column

in

the

result

table,

and

the

second

data

type

declaration

corresponds

to

the

second

column

in

the

result

table.

You

need

to

specify

Java

data

types

in

the

iterators

that

closely

match

the

corresponding

DB2®

column

data

types.

See“Java,

JDBC,

and

SQL

data

types”

on

page

101

for

a

list

of

the

best

mappings

between

Java

data

types

and

DB2

data

types.

You

can

declare

an

iterator

in

a

number

of

ways.

However,

because

a

Java

class

underlies

each

iterator,

you

need

to

ensure

that

when

you

declare

an

iterator,

the

underlying

class

obeys

Java

rules.

For

example,

iterators

that

contain

a

with-clause

must

be

declared

as

public.

Therefore,

if

an

iterator

needs

to

be

public,

it

can

be

declared

only

where

a

public

class

is

allowed.

The

following

list

describes

some

alternative

methods

of

declaring

an

iterator:

v

As

public,

in

a

source

file

by

itself

This

is

the

most

versatile

method

of

declaring

an

iterator.

This

method

lets

you

use

the

iterator

declaration

in

other

code

modules,

and

provides

an

#sql

iterator

ByName(String

LastName,

Date

HireDate);

�1�

//

Declare

named

iterator

ByName

{

ByName

nameiter;

//

Declare

object

of

ByName

class

�2�

#sql

[ctxt]

nameiter={SELECT

LASTNAME,

HIREDATE

FROM

EMPLOYEE};

�3�

//

Assign

the

result

table

of

the

SELECT

//

to

iterator

object

nameiter

while

(nameiter.next())

//

Move

the

iterator

through

the

result

�4�

//

table

and

test

whether

all

rows

retrieved

{

System.out.println(

nameiter.LastName()

+

"

was

hired

on

"

+

nameiter.HireDate());

//

Use

accessor

methods

LastName

and

//

HireDate

to

retrieve

column

values

}

nameiter.close();

//

Close

the

iterator

�5�

}

Figure

37.

Using

a

named

iterator

Chapter

3.

SQLJ

application

programming

69

iterator

that

works

for

all

SQLJ

applications.

In

addition,

there

are

no

concerns

about

having

other

top-level

classes

or

public

classes

in

the

same

source

file.

v

As

a

top-level

class

in

a

source

file

that

contains

other

top-level

class

definitions

Java

allows

only

one

public,

top-level

class

in

a

code

module.

Therefore,

if

you

need

to

declare

the

iterator

as

public,

such

as

when

the

iterator

includes

a

with-clause,

no

other

classes

in

the

code

module

can

be

declared

as

public.

v

As

a

nested

static

class

within

another

class

Using

this

alternative

lets

you

combine

the

iterator

declaration

with

other

class

declarations

in

the

same

source

file,

declare

the

iterator

and

other

classes

as

public,

and

make

the

iterator

class

visible

from

other

code

modules

or

packages.

However,

when

you

reference

the

iterator

from

outside

the

nesting

class,

you

must

fully-qualify

the

iterator

name

with

the

name

of

the

nesting

class.

v

As

an

inner

class

within

another

class

When

you

declare

an

iterator

in

this

way,

you

can

instantiate

it

only

within

an

instance

of

the

nesting

class.

However,

you

can

declare

the

iterator

and

other

classes

in

the

file

as

public.

You

cannot

cast

a

JDBC

ResultSet

to

an

iterator

if

the

iterator

is

declared

as

an

inner

class.

This

restriction

does

not

apply

to

an

iterator

that

is

declared

as

a

static

nested

class.

See

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

79

for

more

information

on

casting

a

ResultSet

to

a

iterator.

2.

Create

an

instance

of

the

iterator

class.

You

declare

an

object

of

the

positioned

iterator

class

to

retrieve

rows

from

a

result

table.

3.

Assign

the

result

table

of

a

SELECT

to

an

instance

of

the

iterator.

To

assign

the

result

table

of

a

SELECT

to

an

iterator,

you

use

an

SQLJ

assignment

clause.

The

format

of

the

assignment

clause

for

a

positioned

iterator

is:

#sql

context-clause

iterator-object={select-statement};

4.

Retrieve

rows.

Do

this

by

executing

FETCH

statements

in

executable

clauses

in

a

loop.

The

FETCH

statements

looks

the

same

as

a

FETCH

statements

in

other

languages.

To

test

whether

you

have

retrieved

all

rows,

invoke

the

PositionedIterator.endFetch

method

after

each

FETCH.

endFetch

returns

a

boolean

with

the

value

true

if

the

FETCH

failed

because

there

are

no

rows

to

retrieve.

5.

Close

the

iterator.

Use

the

PositionedIterator.close

method

to

do

this.

The

following

code

demonstrates

how

to

declare

and

use

a

positioned

iterator.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

70

Application

Programming

Guide

and

Reference

for

Java™

Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application

As

in

DB2®

applications

in

other

languages,

performing

positioned

UPDATEs

and

DELETEs

is

an

extension

of

retrieving

rows

from

a

result

table.

The

basic

steps

are:

1.

Declare

the

iterator.

The

iterator

can

be

positioned

or

named.

For

positioned

UPDATE

or

DELETE

operations,

the

iterator

must

be

declared

as

updatable.

To

do

this,

the

declaration

must

include

the

following

clauses:

implements

sqlj.runtime.ForUpdate

This

clause

causes

the

generated

iterator

class

to

include

methods

for

using

updatable

iterators.

This

clause

is

required

for

programs

with

positioned

UPDATE

or

DELETE

operations.

with

(updateColumns=″column-list″)

This

clause

specifies

a

comma-separated

list

of

the

columns

of

the

result

table

that

the

iterator

will

update.

This

clause

is

optional.

You

need

to

declare

the

iterator

as

public,

so

you

need

to

follow

the

for

declaring

and

using

public

iterators

in

the

same

file

or

different

files.

If

you

declare

the

iterator

in

a

file

by

itself,

any

SQLJ

source

file

that

has

addressability

to

the

iterator

and

imports

the

generated

class

can

retrieve

data

and

execute

positioned

UPDATE

or

DELETE

statements

using

the

iterator.

The

authorization

ID

under

which

a

positioned

UPDATE

or

DELETE

statement

executes

depends

on

whether

the

statement

executes

statically

or

dynamically.

If

the

statement

executes

statically,

the

authorization

ID

is

the

owner

of

the

DB2

plan

or

package

that

includes

the

statement.

If

the

statement

executes

dynamically

the

authorization

ID

is

determined

by

the

DYNAMICRULES

behavior

that

is

in

effect.

For

the

DB2

Universal

JDBC

Driver,

the

behavior

is

always

DYNAMICRULES

BIND.

See

the

discussion

of

authorization

IDs

and

dynamic

SQL

in

Chapter

2

of

DB2

SQL

Reference

for

more

information.

2.

Disable

autocommit

mode

for

the

connection.

#sql

iterator

ByPos(String,Date);

//

Declare

positioned

iterator

ByPos

�1�

{

ByPos

positer;

//

Declare

object

of

ByPos

class

�2�

String

name

=

null;

//

Declare

host

variables

Date

hrdate;

#sql

[ctxt]

positer

=

{SELECT

LASTNAME,

HIREDATE

FROM

EMPLOYEE};

�3�

//

Assign

the

result

table

of

the

SELECT

//

to

iterator

object

positer

#sql

{FETCH

:positer

INTO

:name,

:hrdate

};

�4�

//

Retrieve

the

first

row

while

(!positer.endFetch())

//

Check

whether

the

FETCH

returned

a

row

{

System.out.println(name

+

"

was

hired

in

"

+

hrdate);

#sql

{FETCH

:positer

INTO

:name,

:hrdate

};

//

Fetch

the

next

row

}

positer.close();

//

Close

the

iterator

�5�

}

Figure

38.

Using

a

positioned

iterator

Chapter

3.

SQLJ

application

programming

71

If

autocommit

mode

is

enabled,

a

COMMIT

operation

occurs

every

time

the

positioned

UPDATE

statement

executes,

which

causes

the

iterator

to

be

destroyed

unless

the

iterator

has

the

with

(holdability=true)

attribute.

Therefore,

you

need

to

turn

autocommit

off

to

prevent

COMMIT

operations

until

you

have

finished

using

the

iterator.

If

you

want

a

COMMIT

to

occur

after

every

update

operation,

an

alternative

way

to

keep

the

iterator

from

being

destroyed

after

each

COMMIT

operation

is

to

declare

the

iterator

with

(holdability=true).

3.

Create

an

instance

of

the

iterator

class.

This

is

the

same

step

as

for

a

non-updatable

iterator.

4.

Assign

the

result

table

of

a

SELECT

to

an

instance

of

the

iterator.

This

is

the

same

step

as

for

a

non-updatable

iterator.

The

SELECT

statement

must

not

include

a

FOR

UPDATE

clause.

5.

Retrieve

and

update

rows.

For

a

positioned

iterator,

do

this

by

performing

the

following

actions

in

a

loop:

a.

Execute

a

FETCH

statement

in

an

executable

clause

to

obtain

the

current

row.

b.

Test

whether

the

iterator

is

pointing

to

a

row

of

the

result

table

by

invoking

the

PositionedIterator.endFetch

method.

c.

If

the

iterator

is

pointing

to

a

row

of

the

result

table,

execute

an

SQL

UPDATE...

WHERE

CURRENT

OF

:iterator-object

statement

in

an

executable

clause

to

update

the

columns

in

the

current

row.

Execute

an

SQL

DELETE...

WHERE

CURRENT

OF

:iterator-object

statement

in

an

executable

clause

to

delete

the

current

row.

For

a

named

iterator,

do

this

by

performing

the

following

actions

in

a

loop:

a.

Invoke

the

next

method

to

move

the

iterator

forward.

b.

Test

whether

the

iterator

is

pointing

to

a

row

of

the

result

table

by

checking

whether

next

returns

true.

c.

Execute

an

SQL

UPDATE...

WHERE

CURRENT

OF

iterator-object

statement

in

an

executable

clause

to

update

the

columns

in

the

current

row.

Execute

an

SQL

DELETE...

WHERE

CURRENT

OF

iterator-object

statement

in

an

executable

clause

to

delete

the

current

row.

6.

Close

the

iterator.

Use

the

close

method

to

do

this.

The

following

code

shows

how

to

declare

a

positioned

iterator

and

use

it

for

positioned

UPDATEs.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously

described

steps.

First,

in

one

file,

declare

positioned

iterator

UpdByPos,

specifying

that

you

want

to

use

the

iterator

to

update

column

SALARY:

Then,

in

another

file,

use

UpdByPos

for

a

positioned

UPDATE,

as

shown

in

the

following

code

fragment:

import

java.math.*;

//

Import

this

class

for

BigDecimal

data

type

#sql

public

iterator

UpdByPos

implements

sqlj.runtime.ForUpdate

�1�

with(updateColumns="SALARY")

(String,

BigDecimal);

Figure

39.

Declaring

a

positioned

iterator

for

a

positioned

UPDATE

72

Application

Programming

Guide

and

Reference

for

Java™

The

following

code

shows

how

to

declare

a

named

iterator

and

use

it

for

positioned

UPDATEs.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously

described

steps.

First,

in

one

file,

declare

named

iterator

UpdByName,

specifying

that

you

want

to

use

the

iterator

to

update

column

SALARY:

import

sqlj.runtime.*;

//

Import

files

for

SQLJ

and

JDBC

APIs

import

java.sql.*;

import

java.math.*;

//

Import

this

class

for

BigDecimal

data

type

import

UpdByPos;

//

Import

the

generated

iterator

class

that

//

was

created

by

the

iterator

declaration

clause

//

for

UpdByName

in

another

file

#sql

context

HSCtx;

//

Create

a

connnection

context

class

HSCtx

public

static

void

main

(String

args[])

{

try

{

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

HSjdbccon=

DriverManager.getConnection("jdbc:db2:SANJOSE");

//

Create

a

JDBC

connection

object

HSjdbccon.setAutoCommit(false);

//

Set

autocommit

off

so

automatic

commits

�2�

//

do

not

destroy

the

cursor

between

updates

HSCtx

myConnCtx=new

HSCtx(HSjdbccon);

//

Create

a

connection

context

object

UpdByPos

upditer;

//

Declare

iterator

object

of

UpdByPos

class

�3�

String

enum;

//

Declares

host

variable

to

receive

EMPNO

BigDecimal

sal;

//

and

SALARY

column

values

#sql

[myConnCtx]

upditer

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

�4�

WHERE

WORKDEPT='D11'};

//

Assign

result

table

to

iterator

object

#sql

{FETCH

:upditer

INTO

:enum,:sal};

�5a�

//

Move

cursor

to

next

row

while

(!upditer.endFetch())

�5b�

//

Check

if

on

a

row

{

#sql

[myConnCtx]

{UPDATE

EMPLOYEE

SET

SALARY=SALARY*1.05

WHERE

CURRENT

OF

:upditer};

�5c�

//

Perform

positioned

update

System.out.println("Updating

row

for

"

+

enum);

#sql

{FETCH

:upditer

INTO

:enum,:sal};

//

Move

cursor

to

next

row

}

upditer.close();

//

Close

the

iterator

�6�

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

changes

myConnCtx.close();

//

Close

the

connection

context

}

Figure

40.

Performing

a

positioned

UPDATE

with

a

positioned

iterator

import

java.math.*;

//

Import

this

class

for

BigDecimal

data

type

#sql

public

iterator

UpdByName

implements

sqlj.runtime.ForUpdate

�1�

with(updateColumns="SALARY")

(String

EmpNo,

BigDecimal

Salary);

Figure

41.

Declaring

a

named

iterator

for

a

positioned

UPDATE

Chapter

3.

SQLJ

application

programming

73

Then,

in

another

file,

use

UpdByName

for

a

positioned

UPDATE,

as

shown

in

the

following

code

fragment:

Multiple

open

iterators

for

the

same

SQL

statement

in

an

SQLJ

application

If

you

are

using

the

DB2

Universal

JDBC

Driver,

and

your

application

connects

to

a

DB2

UDB

for

z/OS

Version

8

server,

or

a

DB2

UDB

for

Linux,

UNIX,

and

Windows

server

at

the

FixPak

4

level

or

later,

you

can

have

multiple

concurrently

open

iterators

for

a

single

SQL

statement

in

an

SQLJ

application.

With

this

capability,

you

can

perform

one

operation

on

a

table

using

one

iterator

while

you

perform

a

different

operation

on

the

same

table

using

another

iterator.

import

sqlj.runtime.*;

//

Import

files

for

SQLJ

and

JDBC

APIs

import

java.sql.*;

import

java.math.*;

//

Import

this

class

for

BigDecimal

data

type

import

UpdByName;

//

Import

the

generated

iterator

class

that

//

was

created

by

the

iterator

declaration

clause

//

for

UpdByName

in

another

file

#sql

context

HSCtx;

//

Create

a

connnection

context

class

HSCtx

public

static

void

main

(String

args[])

{

try

{

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch

(ClassNotFoundException

e)

{

e.printStackTrace();

}

Connection

HSjdbccon=

DriverManager.getConnection("jdbc:db2:SANJOSE");

//

Create

a

JDBC

connection

object

HSjdbccon.setAutoCommit(false);

//

Set

autocommit

off

so

automatic

commits

�2�

//

do

not

destroy

the

cursor

between

updates

HSCtx

myConnCtx=new

HSCtx(HSjdbccon);

//

Create

a

connection

context

object

UpdByName

upditer;

�3�

//

Declare

iterator

object

of

UpdByName

class

String

enum;

//

Declare

host

variable

to

receive

EmpNo

//

column

values

#sql

[myConnCtx]

upditer

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

�4�

WHERE

WORKDEPT='D11'};

//

Assign

result

table

to

iterator

object

while

(upditer.next())

�5a,

5b�

//

Move

cursor

to

next

row

and

//

check

ifon

a

row

{

enum

=

upditer.EmpNo();

//

Get

employee

number

from

current

row

#sql

[myConnCtx]

{UPDATE

EMPLOYEE

SET

SALARY=SALARY*1.05

WHERE

CURRENT

OF

:upditer};

�5c�

//

Perform

positioned

update

System.out.println("Updating

row

for

"

+

enum);

}

upditer.close();

//

Close

the

iterator

�6�

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

changes

myConnCtx.close();

//

Close

the

connection

context

}

Figure

42.

Performing

a

positioned

UPDATE

with

a

named

iterator

74

Application

Programming

Guide

and

Reference

for

Java™

|

|

|
|
|
|
|
|

When

you

use

concurrently

open

iterators

in

an

application,

you

should

close

iterators

when

you

no

longer

need

them

to

prevent

excessive

storage

consumption

in

the

Java

heap.

The

following

examples

demonstrate

how

to

perform

the

same

operations

on

a

table

without

concurrently

open

iterators

on

a

single

SQL

statement

and

with

concurrently

open

iterators

on

a

single

SQL

statement.

These

examples

use

the

following

iterator

declaration:

import

java.math.*;

#sql

public

iterator

MultiIter(String

EmpNo,

BigDecimal

Salary);

Without

the

capability

for

multiple,

concurrently

open

iterators

for

a

single

SQL

statement,

if

you

want

to

select

employee

and

salary

values

for

a

specific

employee

number,

you

need

to

define

a

different

SQL

statement

for

each

employee

number,

as

shown

in

Figure

43.

Figure

44

on

page

76

demonstrates

how

you

can

perform

the

same

operations

when

you

have

the

capability

for

multiple,

concurrently

open

iterators

for

a

single

SQL

statement.

MultiIter

iter1

=

null;

//

Iterator

instance

for

retrieving

//

data

for

first

employee

String

EmpNo1

=

"000100";

//

Employee

number

for

first

employee

#sql

[ctx]

iter2

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

WHERE

EMPNO

=

:EmpNo1};

//

Assign

result

table

to

first

iterator

MultiIter

iter2

=

null;

//

Iterator

instance

for

retrieving

//

data

for

second

employee

String

EmpNo2

=

"000200";

//

Employee

number

for

second

employee

#sql

[ctx]

iter2

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

WHERE

EMPNO

=

:EmpNo2};

//

Assign

result

table

to

second

iterator

//

Process

with

iter1

//

Process

with

iter2

iter1.close();

//

Close

the

iterators

iter2.close();

Figure

43.

Example

of

concurrent

table

operations

using

iterators

with

different

SQL

statements

Chapter

3.

SQLJ

application

programming

75

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

Multiple

open

instances

of

an

iterator

in

an

SQLJ

application

Multiple

instances

of

an

iterator

can

be

open

concurrently

in

a

single

SQLJ

application.

One

application

for

this

ability

is

to

open

several

instances

of

an

iterator

that

uses

host

expressions.

Each

instance

can

use

a

different

set

of

host

expression

values.

The

following

example

shows

an

application

with

two

concurrently

open

instances

of

an

iterator.

As

with

any

other

iterator,

you

need

to

remember

to

close

this

iterator

after

the

last

time

you

use

it

to

prevent

excessive

storage

consumption.

Calling

stored

procedures

in

an

SQLJ

application

To

call

a

stored

procedure,

you

use

an

executable

clause

that

contains

an

SQL

CALL

statement.

You

can

execute

the

CALL

statement

with

host

identifier

parameters.

The

basic

steps

in

calling

a

stored

procedure

are:

...

MultiIter

iter1

=

openIter("000100");

//

Invoke

openIter

to

assign

the

result

table

//

(for

employee

100)

to

the

first

iterator

MultiIter

iter2

=

openIter("000200");

//

Invoke

openIter

to

assign

the

result

//

table

to

the

second

iterator

//

iter1

stays

open

when

iter2

is

opened

//

Process

with

iter1

//

Process

with

iter2

...

iter1.close();

//

Close

the

iterators

iter2.close();

...

public

MultiIter

openIter(String

EmpNo)

//

Method

to

assign

a

result

table

//

to

an

iterator

instance

{

MultiIter

iter;

#sql

[ctxt]

iter

=

{SELECT

EMPNO,

SALARY

FROM

EMPLOYEE

WHERE

EMPNO

=

:EmpNo};

return

iter;

//

Method

returns

an

iterator

instance

}

Figure

44.

Example

of

concurrent

table

operations

using

iterators

with

the

same

SQL

statement

...

ResultSet

myFunc(String

empid)

//

Method

to

open

an

iterator

and

get

a

resultSet

{

MyIter

iter;

#sql

iter

=

{SELECT

*

FROM

EMPLOYEE

WHERE

EMPNO

=

:empid};

return

iter.getResultSet();

}

//

An

application

can

call

this

method

to

get

a

resultSet

for

each

//

employee

ID.

The

application

can

process

each

resultSet

separately.

...

ResultSet

rs1

=

myFunc("000100");

//

Get

employee

record

for

employee

ID

000100

...

ResultSet

rs2

=

myFunc("000200");

//

Get

employee

record

for

employee

ID

000200

Figure

45.

Example

of

opening

more

than

one

instance

of

an

iterator

in

a

single

application

76

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|
|

|
|
|

|
|

1.

Assign

values

to

input

(IN

or

INOUT)

parameters.

2.

Call

the

stored

procedure.

3.

Process

output

(OUT

or

INOUT)

parameters.

4.

If

the

stored

procedure

returns

multiple

result

sets,

retrieve

those

result

sets.

See

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application”

on

page

89.

The

following

code

illustrates

calling

a

stored

procedure

that

has

three

input

parameters

and

three

output

parameters.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Handling

SQL

errors

in

an

SQLJ

application

SQLJ

clauses

use

the

JDBC

class

java.sql.SQLException

for

error

handling.

SQLJ

generates

an

SQLException

under

the

following

circumstances:

v

When

any

SQL

statement

returns

a

negative

SQL

error

code

v

When

a

SELECT

INTO

SQL

statement

returns

a

+100

SQL

error

code

You

can

use

the

getErrorCode

method

to

retrieve

SQL

error

codes

and

the

getSQLState

method

to

retrieve

SQLSTATEs.

To

handle

SQL

errors

in

your

SQLJ

application,

import

the

java.sql.SQLException

class,

and

use

the

Java™

error

handling

try/catch

blocks

to

modify

program

flow

when

an

SQL

error

occurs.

For

example:

try

{

#sql

[ctxt]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

}

catch(SQLException

e)

{

System.out.println("Error

code

returned:

"

+

e.getErrorCode());

}

For

the

JDBC/SQLJ

driver

for

z/OS™,

if

your

SQLJ

or

JDBC

application

runs

only

on

DB2®

UDB

for

OS/390®

or

z/OS,

you

can

retrieve

the

contents

of

the

SQLCA

when

an

SQL

statement

generates

an

SQLWarning

or

SQLException.

For

information

on

writing

code

to

retrieve

the

SQLCA

with

the

JDBC/SQLJ

driver

for

z/OS,

see

“Handling

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

23.

String

FirstName="TOM";

//

Input

parameters

�1�

String

LastName="NARISINST";

String

Address="IBM";

int

CustNo;

//

Output

parameters

String

Mark;

String

MarkErrorText;

...

#sql

[myConnCtx]

{CALL

ADD_CUSTOMER(:IN

FirstName,

�2�

:IN

LastName,

:IN

Address,

:OUT

CustNo,

:OUT

Mark,

:OUT

MarkErrorText)};

//

Call

the

stored

procedure

System.out.println("Output

parameters

from

ADD_CUSTOMER

call:

");

System.out.println("Customer

number

for

"

+

LastName

+

":

"

+

CustNo);

�3�

System.out.println(Mark);

If

(MarkErrorText

!=

null)

System.out.println("

Error

messages:"

+

MarkErrorText);

Figure

46.

Calling

a

stored

procedure

in

an

SQLJ

application

Chapter

3.

SQLJ

application

programming

77

With

the

DB2

Universal

JDBC

Driver,

you

can

retrieve

the

SQLCA.

For

information

on

writing

code

to

retrieve

the

SQLCA

with

the

DB2

Universal

JDBC

Driver,

see

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

20.

Handling

SQL

warnings

in

an

SQLJ

application

Other

than

a

+100

SQL

error

code

on

a

SELECT

INTO

statement,

DB2®

warnings

do

not

throw

SQLExceptions.

To

handle

DB2

warnings,

you

need

to

give

the

program

access

to

the

java.sql.SQLWarning

class.

If

you

want

to

retrieve

DB2-specific

information

about

a

warning,

you

also

need

to

give

the

program

access

to

the

com.ibm.db2.jcc.DB2Diagnosable

interface

and

the

com.ibm.db2.jcc.DB2Sqlca

class.

To

check

for

a

DB2

warning,

invoke

the

getWarnings

method

after

you

execute

an

SQLJ

clause.

getWarnings

returns

the

first

SQLWarning

object

that

an

SQL

statement

generates.

Subsequent

SQLWarning

objects

are

chained

to

the

first

one.

To

retrieve

DB2-specific

information

from

the

SQLWarning

object

with

the

DB2

Universal

JDBC

Driver,

follow

the

instructions

in

“Handling

an

SQLException

under

the

DB2

Universal

JDBC

Driver”

on

page

20.

To

retrieve

DB2-specific

information

from

the

SQLWarning

object

with

the

JDBC/SQLJ

driver

for

z/OS™,

follow

the

instructions

in

“Handling

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

23.

Before

you

can

execute

getWarnings

for

an

SQL

clause,

you

need

to

set

up

an

execution

context

for

that

SQL

clause.

See

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

88

for

information

on

how

to

set

up

an

execution

context.

The

following

example

demonstrates

how

to

retrieve

an

SQLWarning

object

for

an

SQL

clause

with

execution

context

execCtx:

ExecutionContext

execCtx=myConnCtx.getExecutionContext();

//

Get

default

execution

context

from

//

connection

context

SQLWarning

sqlWarn;

...

#sql

[myConnCtx,execCtx]

{SELECT

LASTNAME

INTO

:empname

FROM

EMPLOYEE

WHERE

EMPNO='000010'};

if

((sqlWarn

=

execCtx.getWarnings())

!=

null)

System.out.println("SQLWarning

"

+

sqlWarn);

Advanced

SQLJ

application

programming

concepts

The

following

topics

contain

more

advanced

information

about

writing

SQLJ

applications:

v

“Using

SQLJ

and

JDBC

in

the

same

application”

on

page

79

v

“LOBs

in

SQLJ

applications

with

the

DB2

Universal

JDBC

Driver”

on

page

82

v

“Java

data

types

for

retrieving

or

updating

LOB

column

data

in

SQLJ

applications”

on

page

82

v

“Using

large

objects

(LOBs)

in

SQLJ

applications

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

84

v

“ROWIDs

in

SQLJ

with

the

DB2

Universal

JDBC

Driver”

on

page

85

v

“Using

graphic

string

constants

in

SQLJ

applications”

on

page

87

v

“Distinct

types

in

SQLJ

applications”

on

page

87

v

“Controlling

the

execution

of

SQL

statements

in

SQLJ”

on

page

88

v

“Retrieving

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application”

on

page

89

v

“Making

batch

updates

in

SQLJ

applications”

on

page

90

v

“Iterators

as

passed

variables

for

positioned

UPDATE

or

DELETE

operations

in

an

SQLJ

application”

on

page

94

78

Application

Programming

Guide

and

Reference

for

Java™

v

“Using

scrollable

iterators

in

an

SQLJ

application”

on

page

96

Using

SQLJ

and

JDBC

in

the

same

application

You

can

combine

SQLJ

clauses

and

JDBC

calls

in

a

single

program.

To

do

this

effectively,

you

need

to

be

able

to

do

the

following

things:

v

Use

a

JDBC

Connection

to

build

an

SQLJ

ConnectionContext,

or

obtain

a

JDBC

Connection

from

an

SQLJ

ConnectionContext.

v

Use

an

SQLJ

iterator

to

retrieve

data

from

a

JDBC

ResultSet

or

generate

a

JDBC

ResultSet

from

an

SQLJ

iterator.

Building

an

SQLJ

ConnectionContext

from

a

JDBC

Connection:

To

do

that:

1.

Execute

an

SQLJ

connection

declaration

clause

to

create

a

ConnectionContext

class.

2.

Load

the

driver

or

obtain

a

DataSource

instance.

3.

Invoke

the

JDBC

DriverManager.getConnection

or

DataSource.getConnection

method

to

obtain

a

JDBC

Connection.

4.

Invoke

the

ConnectionContext

constructor

with

the

Connection

as

its

argument

to

create

the

ConnectionContext

object.

Obtaining

a

JDBC

Connection

from

an

SQLJ

ConnectionContext:

To

do

this,

1.

Execute

an

SQLJ

connection

declaration

clause

to

create

a

ConnectionContext

class.

2.

Load

the

driver

or

obtain

a

DataSource

instance.

3.

Invoke

the

ConnectionContext

constructor

with

the

URL

of

the

driver

and

any

other

necessary

parameters

as

its

arguments

to

create

the

ConnectionContext

object.

4.

Invoke

the

JDBC

ConnectionContext.getConnection

method

to

create

the

JDBC

Connection

object.

See

“Connecting

to

a

data

source

using

SQLJ”

on

page

58

for

more

information

on

SQLJ

connections.

Retrieving

JDBC

result

sets

using

SQLJ

iterators:

Use

the

iterator

conversion

statement

to

manipulate

a

JDBC

result

set

as

an

SQLJ

iterator.

The

general

form

of

an

iterator

conversion

statement

is:

#sql

iterator={CAST

:result-set};

Before

you

can

successfully

cast

a

result

set

to

an

iterator,

the

iterator

must

conform

to

the

following

rules:

v

The

iterator

must

be

declared

as

public.

v

If

the

iterator

is

a

positioned

iterator,

the

number

of

columns

in

the

result

set

must

match

the

number

of

columns

in

the

iterator.

In

addition,

the

data

type

of

each

column

in

the

result

set

must

match

the

data

type

of

the

corresponding

column

in

the

iterator.

v

If

the

iterator

is

a

named

iterator,

the

name

of

each

accessor

method

must

match

the

name

of

a

column

in

the

result

set.

In

addition,

the

data

type

of

the

object

that

an

accessor

method

returns

must

match

the

data

type

of

the

corresponding

column

in

the

result

set.

Chapter

3.

SQLJ

application

programming

79

The

code

in

Figure

47

builds

and

executes

a

query

using

a

JDBC

call,

executes

an

iterator

conversion

statement

to

convert

the

JDBC

result

set

to

an

SQLJ

iterator,

and

retrieves

rows

from

the

result

table

using

the

iterator.

Notes

to

Figure

47:

�1�

This

SQLJ

clause

creates

the

named

iterator

class

ByName,

which

has

accessor

methods

LastName()

and

HireDate()

that

return

the

data

from

result

table

columns

LASTNAME

and

HIREDATE.

�2�

This

statement

and

the

following

two

statements

build

and

prepare

a

query

for

dynamic

execution

using

JDBC.

�3�

This

JDBC

statement

executes

the

SELECT

statement

and

assigns

the

result

table

to

result

set

rs.

�4�

This

iterator

conversion

clause

converts

the

JDBC

ResultSet

rs

to

SQLJ

iterator

nameiter,

and

the

following

statements

use

nameiter

to

retrieve

values

from

the

result

table.

�5�

The

nameiter.close()

method

closes

the

SQLJ

iterator

and

JDBC

ResultSet

rs.

Generating

JDBC

ResultSets

from

SQLJ

iterators:

Use

the

getResultSet

method

to

generate

a

JDBC

ResultSet

from

an

SQLJ

iterator.

Every

SQLJ

iterator

has

a

getResultSet

method.

After

you

convert

an

iterator

to

a

result

set,

you

need

to

fetch

rows

using

only

the

result

set.

The

code

in

Figure

48

on

page

81

generates

a

positioned

iterator

for

a

query,

converts

the

iterator

to

a

result

set,

and

uses

JDBC

methods

to

fetch

rows

from

the

table.

#sql

public

iterator

ByName(String

LastName,

Date

HireDate);

�1�

public

void

HireDates(ConnectionContext

connCtx,

String

whereClause)

{

ByName

nameiter;

//

Declare

object

of

ByName

class

Connection

conn=connCtx.getConnection();

//

Create

JDBC

connection

Statement

stmt

=

conn.createStatement();

�2�

String

query

=

"SELECT

LASTNAME,

HIREDATE

FROM

EMPLOYEE";

query+=whereClause;

//

Build

the

query

ResultSet

rs

=

stmt.executeQuery(query);

�3�

#sql

[connCtx]

nameiter

=

{CAST

:rs};

�4�

while

(nameiter.next())

{

System.out.println(

nameiter.LastName()

+

"

was

hired

on

"

+

nameiter.HireDate());

}

nameiter.close();

�5�

stmt.close();

}

Figure

47.

Converting

a

JDBC

result

set

to

an

SQLJ

iterator

80

Application

Programming

Guide

and

Reference

for

Java™

Notes

to

Figure

48:

�1�

This

SQLJ

clause

executes

the

SELECT

statement,

constructs

an

iterator

object

that

contains

the

result

table

for

the

SELECT

statement,

and

assigns

the

iterator

object

to

variable

iter.

�2�

The

getResultSet()

method

converts

iterator

iter

to

ResultSet

rs.

�3�

The

JDBC

getString()

and

getDate()

methods

retrieve

values

from

the

ResultSet.

The

next()

method

moves

the

cursor

to

the

next

row

in

the

ResultSet.

�4�

The

rs.close()

method

closes

the

SQLJ

iterator

as

well

as

the

ResultSet.

Rules

and

restrictions

for

using

JDBC

ResultSets

in

SQLJ

applications:

When

you

write

SQLJ

applications

that

include

JDBC

result

sets,

observe

the

following

rules

and

restrictions:

v

Before

you

can

access

the

columns

of

a

remote

table

by

name,

through

either

a

named

iterator

or

an

iterator

that

is

converted

to

a

JDBC

ResultSet

object,

the

DB2®

DESCSTAT

subsystem

parameter

must

be

set

to

YES.

See

“Setting

DB2

subsystem

parameters

for

SQLJ

support”

on

page

235

for

more

information.

v

You

cannot

cast

a

ResultSet

to

an

SQLJ

iterator

if

the

ResultSet

and

the

iterator

have

different

holdability

attributes.

A

JDBC

ResultSet

or

an

SQLJ

iterator

can

remain

open

after

a

COMMIT

operation.

For

a

JDBC

ResultSet,

this

characteristic

is

controlled

by

the

JDBC/SQLJ

Driver

for

OS/390

run-time

property

DB2CURSORHOLD

or

by

the

DB2

Universal

JDBC

Driver

property

resultSetHoldability.

For

an

SQLJ

iterator,

this

characteristic

is

controlled

by

the

with

holdability

parameter

of

the

iterator

declaration.

Casting

a

ResultSet

that

has

holdability

to

an

SQLJ

iterator

that

does

not,

or

casting

a

ResultSet

that

does

not

have

holdability

to

an

SQLJ

iterator

that

does,

is

not

supported.

v

Close

a

generated

ResultSet

object

or

the

underlying

iterator

at

the

end

of

the

program.

Closing

the

iterator

object

from

which

a

ResultSet

object

is

generated

also

closes

the

ResultSet

object.

Closing

the

generated

ResultSet

object

also

closes

the

iterator

object.

In

general,

it

is

best

to

close

the

object

that

is

used

last.

v

For

the

DB2

Universal

JDBC

Driver,

which

supports

scrollable

iterators

and

scrollable

and

updatable

ResultSets,

the

following

restrictions

apply:

–

Scrollable

iterators

have

the

same

restrictions

as

their

underlying

JDBC

ResultSets.

For

example,

because

scrollable

ResultSets

do

not

support

INSERTs,

scrollable

iterators

do

not

support

INSERTs.

–

You

cannot

cast

a

JDBC

ResultSet

that

is

not

updatable

to

an

SQLJ

iterator

that

is

updatable.

#sql

iterator

EmpIter(String,

java.sql.Date);

{

...

EmpIter

iter=null;

#sql

[connCtx]

iter=

{SELECT

LASTNAME,

HIREDATE

FROM

EMPLOYEE};

�1�

ResultSet

rs=iter.getResultSet();

�2�

while

(rs.next())

�3�

{

System.out.println(rs.getString(1)

+

"

was

hired

in

"

+

rs.getDate(2));

}

rs.close();

�4�

}

Figure

48.

Converting

an

SQLJ

iterator

to

a

JDBC

ResultSet

Chapter

3.

SQLJ

application

programming

81

LOBs

in

SQLJ

applications

with

the

DB2

Universal

JDBC

Driver

With

the

DB2

Universal

JDBC

Driver,

you

can

retrieve

LOB

data

into

Clob

or

Blob

host

expressions

or

update

CLOB,

BLOB,

or

DBCLOB

columns

from

Clob

or

Blob

host

expressions.

You

can

also

declare

iterators

with

Clob

or

Blob

data

types

to

retrieve

data

from

CLOB,

BLOB,

or

DBCLOB

columns.

Retrieving

or

updating

LOB

data:

To

retrieve

data

from

a

BLOB

column,

declare

an

iterator

that

includes

a

data

type

of

Blob

or

byte[].

To

retrieve

data

from

a

CLOB

or

DBCLOB

column,

declare

an

iterator

in

which

the

corresponding

column

has

a

Clob

data

type.

To

update

data

in

a

BLOB

column,

use

a

host

expression

with

data

type

Blob.

To

update

data

in

a

CLOB

or

DBCLOB

column,

use

a

host

expression

with

data

type

Clob.

LOB

locator

support:

The

DB2

Universal

JDBC

Driver

can

use

LOB

locators

to

retrieve

data.

To

cause

JDBC

to

use

LOB

locators

to

retrieve

data

from

LOB

columns,

you

need

to

set

the

fullyMaterializeLobData

property

to

false.

Properties

are

discussed

in

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106.

fullyMaterializeLobData

has

no

effect

on

stored

procedure

output

parameters

or

LOBs

that

are

fetched

using

scrollable

cursors.

You

cannot

call

a

stored

procedure

that

has

LOB

locator

parameters.

When

you

fetch

from

scrollable

cursors,

JDBC

always

uses

LOB

locators

to

retrieve

data

from

LOB

columns.

As

in

any

other

language,

a

LOB

locator

in

a

Java

application

is

associated

with

only

one

DB2

subsystem.

You

cannot

use

a

single

LOB

locator

to

move

data

between

two

different

DB2

subsystems.

To

move

LOB

data

between

two

DB2

subsystems,

you

need

to

materialize

the

LOB

data

when

you

retrieve

it

from

a

table

in

the

first

DB2

subsystem

and

then

insert

that

data

into

the

table

in

the

second

DB2

subsystem.

Java

data

types

for

retrieving

or

updating

LOB

column

data

in

SQLJ

applications

For

Universal

Driver

type

2

connectivity

to

DB2

UDB

for

z/OS,

when

the

JDBC

driver

processes

a

CALL

statement,

the

driver

cannot

determine

the

parameter

data

types.

When

the

deferPrepares

property

is

set

to

true,

and

the

DB2

Universal

JDBC

Driver

processes

an

uncustomized

SQLJ

statement

that

includes

host

expressions,

the

driver

might

need

to

do

extra

processing

to

determine

data

types.

This

extra

processing

can

impact

performance.

When

the

JDBC

driver

cannot

immediately

determine

the

data

type

of

a

parameter

that

is

used

with

a

LOB

column,

you

need

to

choose

a

parameter

data

type

that

is

compatible

with

the

LOB

data

type.

When

the

JDBC

driver

cannot

determine

the

data

type

of

a

parameter

that

is

used

with

a

LOB

column,

you

need

to

choose

a

parameter

data

type

that

is

compatible

with

the

LOB

data

type.

Input

parameters

for

BLOB

columns:

For

input

parameters

for

BLOB

columns,

you

can

use

either

of

the

following

techniques:

82

Application

Programming

Guide

and

Reference

for

Java™

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|

v

Use

a

java.sql.Blob

input

variable,

which

is

an

exact

match

for

a

BLOB

column:

java.sql.Blob

blobData;

#sql

{CALL

STORPROC(:IN

blobData)};

Before

you

can

use

a

java.sql.Blob

input

variable,

you

need

to

create

a

java.sql.Blob

object,

and

then

populate

that

object.

For

example,

if

you

are

using

the

DB2

Universal

JDBC

Driver,

you

can

use

the

DB2-only

method

com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob

to

create

a

java.sql.Blob

object

and

populate

the

object

with

byte[]

data:

byte[]

byteArray

=

{0,

1,

2,

3};

java.sql.Blob

blobData

=

com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob(byteArray);

v

Use

an

input

parameter

of

type

of

sqlj.runtime.BinaryStream.

A

sqlj.runtime.BinaryStream

object

is

compatible

with

a

BLOB

data

type.

For

this

call,

you

need

to

specify

the

exact

length

of

the

input

data:

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream(byteData);

int

numBytes

=

byteData.length;

sqlj.runtime.BinaryStream

binStream

=

new

sqlj.runtime.BinaryStream(byteStream,

numBytes);

#sql

{CALL

STORPROC(:IN

binStream)};

You

cannot

use

this

technique

for

input/output

parameters.

Output

parameters

for

BLOB

columns:

For

output

or

input/output

parameters

for

BLOB

columns,

you

can

use

the

following

technique:

v

Declare

the

output

parameter

or

input/output

variable

with

a

java.sql.Blob

data

type:

java.sql.Blob

blobData

=

null;

#sql

CALL

STORPROC

(:OUT

blobData)};

java.sql.Blob

blobData

=

null;

#sql

CALL

STORPROC

(:INOUT

blobData)};

Input

parameters

for

CLOB

columns:

For

input

parameters

for

CLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

a

java.sql.Clob

input

variable,

which

is

an

exact

match

for

a

CLOB

column:

#sql

CALL

STORPROC(:IN

clobData)};

Before

you

can

use

a

java.sql.Clob

input

variable,

you

need

to

create

a

java.sql.Clob

object,

and

then

populate

that

object.

For

example,

if

you

are

using

the

DB2

Universal

JDBC

Driver,

you

can

use

the

DB2-only

method

com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob

to

create

a

java.sql.Clob

object

and

populate

the

object

with

String

data:

String

stringVal

=

"Some

Data";

java.sql.Clob

clobData

=

com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(stringVal);

v

Use

one

of

the

following

types

of

stream

input

parameters:

–

A

sqlj.runtime.CharacterStream

input

parameter:

Chapter

3.

SQLJ

application

programming

83

|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|

|
|
|

|

|

java.lang.String

charData;

java.io.StringReader

reader

=

new

java.io.StringReader(charData);

sqlj.runtime.CharacterStream

charStream

=

new

sqlj.runtime.CharacterStream

(reader,

charData.length);

#sql

{CALL

STORPROC(:IN

charStream)};

–

A

sqlj.runtime.UnicodeStream

parameter,

for

Unicode

UTF-16

data:

byte[]

charDataBytes

=

charData.getBytes("UnicodeBigUnmarked");

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream(charDataBytes);

sqlj.runtime.UnicodeStream

uniStream

=

new

sqlj.runtime.UnicodeStream(byteStream,

charDataBytes.length

);

#sql

{CALL

STORPROC(:IN

uniStream)};

–

A

sqlj.runtime.AsciiStream

parameter,

for

ASCII

data:

byte[]

charDataBytes

=

charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream

byteStream

=

new

java.io.ByteArrayInputStream

(charDataBytes);

sqlj.runtime.AsciiStream

asciiStream

=

new

sqlj.runtime.AsciiStream

(byteStream,

charDataBytes.length);

#sql

{CALL

STORPROC(:IN

asciiStream)};

For

these

calls,

you

need

to

specify

the

exact

length

of

the

input

data.

You

cannot

use

this

technique

for

input/output

parameters.

v

Use

a

java.lang.String

input

parameter:

java.lang.String

charData;

#sql

{CALL

STORPROC(:IN

charData)};

Output

parameters

for

CLOB

columns:

For

output

our

input/output

parameters

for

CLOB

columns,

you

can

use

one

of

the

following

techniques:

v

Use

a

java.sql.Clob

output

variable,

which

is

an

exact

match

for

a

CLOB

column:

java.sql.Clob

clobData

=

null;

#sql

CALL

STORPROC(:OUT

clobData)};

v

Use

a

java.lang.String

output

variable:

java.lang.String

charData

=

null;

#sql

CALL

STORPROC(:OUT

charData)};

This

technique

should

be

used

only

if

you

know

that

the

length

of

the

retrieved

data

is

less

than

or

equal

to

32KB.

Otherwise,

the

data

is

truncated.

Output

parameters

for

DBCLOB

columns:

DBCLOB

output

or

input/output

parameters

for

stored

procedures

are

not

supported.

Using

large

objects

(LOBs)

in

SQLJ

applications

with

the

JDBC/SQLJ

Driver

for

OS/390

With

the

JDBC/SQLJ

Driver

for

OS/390,

you

cannot

retrieve

data

into

Clob

or

Blob

host

expressions.

However,

you

can

declare

iterators

with

Clob

or

Blob

data

types

to

retrieve

data

from

CLOB,

BLOB,

or

DBCLOB

columns,

and

retrieve

the

data

into

String

host

expressions.

You

can

also

use

String

host

expressions

to

store

data

in

CLOB,

BLOB,

or

DBCLOB

columns.

The

JDBC/SQLJ

Driver

for

OS/390

does

not

use

LOB

locators

for

processing

data,

so

when

you

retrieve

data

from

a

LOB

column

you

get

the

entire

contents

of

the

LOB.

Retrieving

data

from

LOB

columns:

To

retrieve

data

from

a

BLOB

column,

declare

an

iterator

that

includes

a

data

type

of

Blob.

To

retrieve

data

from

a

CLOB

84

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|

|
|

or

DBCLOB

column,

declare

an

iterator

in

which

the

corresponding

column

has

a

Clob

data

type.

The

following

code

fragment

demonstrates

how

to

retrieve

data

from

a

CLOB

column.

Updating

data

in

LOB

columns:

Under

the

JDBC/SQLJ

Driver

for

OS/390,

you

cannot

use

host

expressions

with

Blob

or

Clob

data

types

to

retrieve

or

update

LOB

data

in

SQLJ

programs.

Therefore,

to

update

data

in

LOB

columns,

use

String

host

expressions.

The

following

code

fragment

demonstrates

how

to

insert

data

into

a

CLOB

column.

Using

LOBs

as

stored

procedure

parameters:

You

cannot

call

a

stored

procedure

that

has

LOB

or

LOB

locator

parameters.

ROWIDs

in

SQLJ

with

the

DB2

Universal

JDBC

Driver

DB2

UDB

for

z/OS

and

DB2

UDB

for

iSeries

support

the

ROWID

data

type

for

a

column

in

a

DB2

table.

A

ROWID

is

a

value

that

uniquely

identifies

a

row

in

a

table.

If

you

use

ROWIDs

in

SQLJ

programs,

you

need

to

customize

those

programs.

#sql

iterator

ClobIter

(int

KEYCOL,

Clob

CLOBCOL);

//

Declare

named

iterator

public

static

void

main

(String

args[])

{

...

ClobIter

iter1

=

null;

//

Create

iterator

instance

#sql

[conn]

iter1

=

{SELECT

KEYCOL,

CLOBCOL

from

CLOBTABLE};

while

(iter1.next())

{

int

key1

=

iter1.KEYCOL();

//

Retrieve

KEYCOL

value

Clob

clob1

=

iter1.CLOBCOL();

//

Retrieve

CLOBCOL

value

String

clobstring

=

clob1.getSubString((long)1,100);

//

Use

JDBC

getSubString

method

//

to

retrieve

first

100

bytes

of

//

CLOBCOL

value

System.out.println("KEYCOL

is:

"

+

key1);

System.out.println("First

100

chars

of

CLOBCOL

is:

"

+

clobstring

);

}

Figure

49.

Retrieving

CLOB

data

in

an

SQLJ

program

under

the

JDBC/SQLJ

Driver

for

OS/390

public

static

void

main

(String

args[])

{

...

int

keycol

=

45;

String

clobstr

=

new

String("somereallybigstring");

//

Declare

object

of

class

String

//

and

assign

value

that

is

to

//

be

passed

to

LOB

column

#sql

[conn]

{INSERT

INTO

CLOBTABLE

(KEYCOL,

CLOBCOL)

//

Insert

value

from

String

//

host

identifier

into

LOB

column

VALUES(:keycol,

:clobstr)};

}

Figure

50.

Inserting

data

into

a

CLOB

column

Chapter

3.

SQLJ

application

programming

85

|

|
|

|

The

DB2

Universal

JDBC

Driver

provides

the

DB2-only

class

com.ibm.db2.jcc.DB2RowID

that

you

can

use

in

iterators

and

in

CALL

statement

parameters.

For

an

iterator,

you

can

also

use

the

byte[]

object

type

to

retrieve

ROWID

values.

Figure

51

shows

an

example

of

an

iterator

that

is

used

to

select

values

from

a

ROWID

column:

Figure

52

on

page

87

shows

an

example

of

calling

a

stored

procedure

that

takes

three

ROWID

parameters:

an

IN

parameter,

an

OUT

parameter,

and

an

INOUT

parameter.

#sql

iterator

PosIter(int,String,com.ibm.db2.jcc.DB2RowId);

//

Declare

positioned

iterator

//

for

retrieving

ITEM_ID

(INTEGER),

//

ITEM_FORMAT

(VARCHAR),

and

ITEM_ROWID

(ROWID)

//

values

from

table

ROWIDTAB

{

PosIter

positrowid;

//

Declare

object

of

PosIter

class

com.ibm.db2.jcc.DB2RowId

rowid

=

null;

int

id

=

0;

String

i_fmt

=

null;

//

Declare

host

expressions

#sql

[ctxt]

positrowid

=

{SELECT

ITEM_ID,

ITEM_FORMAT,

ITEM_ROWID

FROM

ROWIDTAB

WHERE

ITEM_ID=3};

//

Assign

the

result

table

of

the

SELECT

//

to

iterator

object

positrowid

#sql

{FETCH

:positrowid

INTO

:id,

:i_fmt,

:rowid};

//

Retrieve

the

first

row

while

(!positrowid.endFetch())

//

Check

whether

the

FETCH

returned

a

row

{System.out.println("Item

ID

"

+

id

+

"

Item

format

"

+

i_fmt

+

"

Item

ROWID

");

printBytes(rowid.getBytes());

//

Use

the

DB2-only

method

getBytes

to

//

convert

the

value

to

bytes

for

printing

#sql

{FETCH

:positrowid

INTO

:id,

:i_fmt,

:rowid};

//

Retrieve

the

next

row

}

positrowid.close();

//

Close

the

iterator

}

Figure

51.

Example

of

using

an

iterator

to

retrieve

ROWID

values

86

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|

|
|
|

|
|
|
|

Using

graphic

string

constants

in

SQLJ

applications

In

EBCDIC

environments,

graphic

string

constants

in

SQLJ

applications

have

the

following

form:

G’\uxxxx\uxxxx...\uxxxx’

xxxx

is

the

Unicode

value

in

hexadecimal

that

corresponds

to

the

desired

EBCDIC

graphic

character.

For

example,

an

EBCDIC

double-byte

G

has

the

hexadecimal

value

42C7.

The

corresponding

Unicode

hexadecimal

value

is

FF27.

Therefore,

in

a

SQLJ

executable

statement,

you

represent

the

graphic

string

constant

for

an

EBCDIC

double-byte

G

as:

G’\uFF27’

The

following

executable

statement

demonstrates

a

searched

UPDATE

that

includes

graphic

string

constants:

Distinct

types

in

SQLJ

applications

In

DB2®,

a

distinct

type

is

a

user-defined

data

type

that

is

internally

represented

as

a

built-in

SQL

data

type.

You

create

a

distinct

type

by

executing

the

SQL

statement

CREATE

DISTINCT

TYPE.

com.ibm.db2.jcc.DB2RowId

in_rowid

=

rowid;

com.ibm.db2.jcc.DB2RowId

out_rowid

=

null;

com.ibm.db2.jcc.DB2RowId

inout_rowid

=

rowid;

//

Declare

an

input,

output,

and

//

input/output

ROWID

parameter

...

#sql

[myConnCtx]

{CALL

SP_ROWID(:IN

in_rowid,

:OUT

out_rowid,

:INOUT

inout_rowid)};

//

Call

the

stored

procedure

System.out.println("Parameter

values

from

SP_ROWID

call:

");

System.out.println("Output

parameter

value

");

printBytes(out_rowid.getBytes());

//

Use

the

DB2-only

method

getBytes

to

//

convert

the

value

to

bytes

for

printing

System.out.println("Input/output

parameter

value

");

printBytes(inout_rowid.getBytes());

Figure

52.

Example

of

calling

a

stored

procedure

with

a

ROWID

parameter

//

GRAPHIC_TABLE

has

one

VARGRAPHIC(10)

column

named

VGCOL.

//

At

least

one

row

contains

the

string

"GRAPHIC"

in

double-byte

//

EBCDIC

characters.

The

Unicode

equivalent

of

"GRAPHIC"

is

//

G’\uFF27\uFF32\uFF21\uFF30\uFF28\uFF29\uFF23’.

//

Update

"GRAPHIC"

in

all

rows

to

"graphic"

in

double-byte

//

EBCDIC

characters.

The

Unicode

equivalent

of

"graphic"

is

//

G’\uFF47\uFF52\uFF41\uFF50\uFF48\uFF49\uFF43’

#sql

[myConnCtx]

{UPDATE

GRAPHIC_TABLE

SET

VGCOL=G’\uFF47\uFF52\uFF41\uFF50\uFF48\uFF49\uFF43’

WHERE

VGCOL=G’\uFF27\uFF32\uFF21\uFF30\uFF28\uFF29\uFF23’};

Figure

53.

Using

graphic

string

constants

in

an

SQLJ

application

Chapter

3.

SQLJ

application

programming

87

|

|
|

|

|
|

|
|
|
|

|

|
|
|

In

an

SQLJ

program,

you

can

create

a

distinct

type

using

the

CREATE

DISTINCT

TYPE

statement

in

an

executable

clause.

You

can

also

use

CREATE

TABLE

in

an

executable

clause

to

create

a

table

that

includes

a

column

of

that

type.

When

you

retrieve

data

from

a

column

of

that

type,

or

update

a

column

of

that

type,

you

use

Java™

identifiers

with

data

types

that

correspond

to

the

built-in

types

on

which

the

distinct

types

are

based.

The

following

example

creates

a

distinct

type

that

is

based

on

an

INTEGER

type,

creates

a

table

with

a

column

of

that

type,

inserts

a

row

into

the

table,

and

retrieves

the

row

from

the

table:

Controlling

the

execution

of

SQL

statements

in

SQLJ

You

can

use

selected

methods

of

the

SQLJ

ExecutionContext

class

to

control

or

monitor

the

execution

of

SQL

statements.

“Selected

sqlj.runtime

classes

and

interfaces”

on

page

143

describes

those

methods.

To

use

ExecutionContext

methods,

follow

these

steps:

1.

Acquire

an

execution

context.

There

are

two

ways

to

acquire

an

execution

context:

v

Acquire

the

default

execution

context

from

the

connection

context.

For

example:

ExecutionContext

execCtx

=

connCtx.getExecutionContext();

v

Create

a

new

execution

context

by

invoking

the

contructor

for

ExecutionContext.

For

example:

ExecutionContext

execCtx=new

ExecutionContext();

2.

Associate

the

execution

context

with

an

SQL

statement.

To

do

that,

specify

an

execution

context

after

the

connection

context

in

the

execution

clause

that

contains

the

SQL

statement.

For

example:

#sql

[connCtx,

execCtx]

{DELETE

FROM

EMPLOYEE

WHERE

SALARY

>

10000};

3.

Invoke

ExecutionContext

methods.

Some

ExecutionContext

methods

are

applicable

before

the

associated

SQL

statement

is

executed,

and

some

are

applicable

only

after

their

associated

SQL

statement

is

executed.

String

empNumVar;

int

shoeSizeVar;

...

#sql

[myConnCtx]

{CREATE

DISTINCT

TYPE

SHOESIZE

AS

INTEGER

WITH

COMPARISONS};

//

Create

distinct

type

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

create

#sql

[myConnCtx]

{CREATE

TABLE

EMP_SHOE

(EMPNO

CHAR(6),

EMP_SHOE_SIZE

SHOESIZE)};

//

Create

table

using

distinct

type

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

create

#sql

[myConnCtx]

{INSERT

INTO

EMP_SHOE

VALUES(’000010’,6)};

//

Insert

a

row

in

the

table

#sql

[myConnCtx]

{COMMIT};

//

Commit

the

INSERT

#sql

[myConnCtx]

{SELECT

EMPNO,

EMP_SHOE_SIZE

INTO

:empNumVar,

:shoeSizeVar

FROM

EMP_SHOE};

//

Retrieve

the

row

System.out.println("Employee

number:

"

+

empNumVar

+

"

Shoe

size:

"

+

shoeSizeVar);

Figure

54.

Defining

and

using

a

distinct

type

88

Application

Programming

Guide

and

Reference

for

Java™

For

example,

you

can

use

method

getUpdateCount

to

count

the

number

of

rows

that

are

deleted

by

a

DELETE

statement

after

you

execute

the

DELETE

statement:

#sql

[connCtx,

execCtx]

{DELETE

FROM

EMPLOYEE

WHERE

SALARY

>

10000};

System.out.println("Deleted

"

+

execCtx.getUpdateCount()

+

"

rows");

Retrieving

multiple

result

sets

from

a

stored

procedure

in

an

SQLJ

application

Some

stored

procedures

return

one

or

more

result

sets

to

the

calling

program.

To

retrieve

the

rows

from

those

result

sets,

you

execute

these

steps:

1.

Acquire

an

execution

context

for

retrieving

the

result

set

from

the

stored

procedure.

2.

Associate

the

execution

context

with

the

CALL

statement

for

the

stored

procedure.

Do

not

use

this

execution

context

for

any

other

purpose

until

you

have

retrieved

and

processed

the

last

result

set.

3.

For

each

result

set:

a.

Use

the

ExecutionContext

method

getNextResultSet

to

retrieve

the

result

set.

b.

If

you

do

not

know

the

contents

of

the

result

set,

use

ResultSetMetaData

methods

to

retrieve

this

information.

c.

Use

an

SQLJ

result

set

iterator

or

JDBC

ResultSet

to

retrieve

the

rows

from

the

result

set.

Result

sets

are

returned

to

the

calling

program

in

the

same

order

that

their

cursors

are

opened

in

the

stored

procedure.

When

there

are

no

more

result

sets

to

retrieve,

getNextResultSet

returns

a

null

value.

getNextResultSet

has

two

forms:

getNextResultSet();

getNextResultSet(int

current);

When

you

invoke

the

first

form

of

getNextResultSet,

SQLJ

closes

the

currently-open

result

set

and

advances

to

the

next

result

set.

When

you

invoke

the

second

form

of

getNextResultSet,

the

value

of

current

indicates

what

SQLJ

does

with

the

currently-open

result

set

before

it

advances

to

the

next

result

set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies

that

the

current

ResultSet

object

is

closed

when

the

next

ResultSet

object

is

returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies

that

the

current

ResultSet

object

stays

open

when

the

next

ResultSet

object

is

returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies

that

all

open

ResultSet

objects

are

closed

when

the

next

ResultSet

object

is

returned.

The

second

form

of

getNextResultSet

requires

JDK

1.4

or

later.

The

following

code

calls

a

stored

procedure

that

returns

multiple

result

sets.

For

this

example,

it

is

assumed

that

the

caller

does

not

know

the

number

of

result

sets

to

be

returned

or

the

contents

of

those

result

sets.

It

is

also

assumed

that

autoCommit

Chapter

3.

SQLJ

application

programming

89

|

is

false.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

Making

batch

updates

in

SQLJ

applications

The

DB2

Universal

JDBC

Driver

supports

batch

updates

in

SQLJ.

With

batch

updates,

instead

of

updating

rows

of

a

DB2®

table

one

at

a

time,

you

can

direct

SQLJ

to

execute

a

group

of

updates

at

the

same

time.

You

can

include

the

following

types

of

statements

in

a

batch

update:

v

Searched

INSERT,

UPDATE,

or

DELETE

statements

v

CREATE,

ALTER,

DROP,

GRANT,

or

REVOKE

statements

v

CALL

statements

with

input

parameters

only

Unlike

JDBC,

SQLJ

allows

heterogeneous

batches

that

contain

statements

with

input

parameters

or

host

expressions.

You

can

therefore

combine

instances

of

the

same

statement,

different

statements,

statements

with

input

parameters

or

host

expressions,

and

statements

with

no

input

parameters

or

host

expressions

in

the

same

SQLJ

statement

batch.

The

basic

steps

for

creating,

executing,

and

deleting

a

batch

of

statements

are:

1.

Disable

AutoCommit

for

the

connection.

2.

Acquire

an

execution

context.

All

statements

that

execute

in

a

batch

must

use

this

execution

context.

3.

Invoke

the

ExecutionContext.setBatching(true)

method

to

create

a

batch.

Subsequent

batchable

statements

that

are

associated

with

the

execution

context

that

you

created

in

step

2

are

added

to

the

batch

for

later

execution.

If

you

want

to

batch

sets

of

statements

that

are

not

batch

compatible

in

parallel,

you

need

to

create

an

execution

context

for

each

set

of

batch

compatible

statements.

4.

Include

SQLJ

executable

clauses

for

SQL

statements

that

you

want

to

batch.

These

clauses

must

include

the

execution

context

that

you

created

in

step

2.

If

an

SQLJ

executable

clause

has

input

parameters

or

host

expressions,

you

can

include

the

statement

in

the

batch

multiple

times

with

different

values

for

the

input

parameters

or

host

expressions.

ExecutionContext

execCtx=myConnCtx.getExecutionContext();

�1�

#sql

[myConnCtx,

execCtx]

{CALL

MULTRSSP()};

�2�

//

MULTRSSP

returns

multiple

result

sets

ResultSet

rs;

while

((rs

=

execCtx.getNextResultSet())

!=

null)

�3a�

{

ResultSetMetaData

rsmeta=rs.getMetaData();

�3b�

int

numcols=rsmeta.getColumnCount();

while

(rs.next())

�3c�

{

for

(int

i=1;

i<=numcols;

i++)

{

String

colval=rs.getString(i);

System.out.println("Column

"

+

i

+

"value

is

"

+

colval);

}

}

}

Figure

55.

Retrieving

result

sets

from

a

stored

procedure

90

Application

Programming

Guide

and

Reference

for

Java™

|

To

determine

whether

a

statement

was

added

to

an

existing

batch,

was

the

first

statement

in

a

new

batch,

or

was

executed

inside

or

outside

a

batch,

invoke

the

ExecutionContext.getUpdateCount

method.

This

method

returns

one

of

the

following

values:

ExecutionContext.ADD_BATCH_COUNT

This

is

a

constant

that

is

returned

if

the

statement

was

added

to

an

existing

batch.

ExecutionContext.NEW_BATCH_COUNT

This

is

a

constant

that

is

returned

if

the

statement

was

the

first

statement

in

a

new

batch.

ExecutionContext.EXEC_BATCH_COUNT

This

is

a

constant

that

is

returned

if

the

statement

was

part

of

a

batch,

and

the

batch

was

executed.

Other

integer

This

value

is

the

number

of

rows

that

were

updated

by

the

statement.

This

value

is

returned

if

the

statement

was

executed

rather

than

added

to

a

batch.

5.

Execute

the

batch

explicitly

or

implicitly.

v

Invoke

the

ExecutionContext.executeBatch

method

to

execute

the

batch

explicitly.

executeBatch

returns

an

integer

array

that

contains

the

number

of

rows

that

were

updated

by

each

statement

in

the

batch.

The

order

of

the

elements

in

the

array

corresponds

to

the

order

in

which

you

added

statements

to

the

batch.

v

Alternatively,

a

batch

executes

implicitly

under

the

following

circumstances:

–

You

include

a

batchable

statement

in

your

program

that

is

not

compatible

with

statements

that

are

already

in

the

batch.

In

this

case,

SQLJ

executes

the

statements

that

are

already

in

the

batch

and

creates

a

new

batch

that

includes

the

incompatible

statement.

SQLJ

also

executes

the

statement

that

is

not

compatible

with

the

statements

in

the

batch.

–

You

include

a

statement

in

your

program

that

is

not

batchable.

In

this

case,

SQLJ

executes

the

statements

that

are

already

in

the

batch.

SQLJ

also

executes

the

statement

that

is

not

batchable.

–

After

you

invoke

the

ExecutionContext.setBatchLimit(n)

method,

you

add

a

statement

to

the

batch

that

brings

the

number

of

statements

in

the

batch

to

n

or

greater.

n

can

have

one

of

the

following

values:

ExecutionContext.UNLIMITED_BATCH

This

constant

indicates

that

implicit

execution

occurs

only

when

SQLJ

encounters

a

statement

that

is

batchable

but

incompatible,

or

not

batchable.

Setting

this

value

is

the

same

as

not

invoking

setBatchLimit.

ExecutionContext.AUTO_BATCH

This

constant

indicates

that

implicit

execution

occurs

when

the

number

of

statements

in

the

batch

reaches

a

number

that

is

set

by

SQLJ.

Positive

integer

When

this

number

of

statements

have

been

added

to

the

batch,

SQLJ

executes

the

batch

implicitly.

However,

the

batch

might

be

executed

before

this

many

statements

have

been

added

if

SQLJ

encounters

a

statement

that

is

batchable

but

incompatible,

or

not

batchable.

Chapter

3.

SQLJ

application

programming

91

To

determine

the

number

of

rows

that

were

updated

by

a

batch

that

was

executed

implicitly,

invoke

the

ExecutionContext.getBatchUpdateCounts

method.

getBatchUpdateCounts

returns

an

integer

array

that

contains

the

number

of

rows

that

were

updated

by

each

statement

in

the

batch.

The

order

of

the

elements

in

the

array

corresponds

to

the

order

in

which

you

added

statements

to

the

batch.

Each

array

element

can

be

one

of

the

following

values:

-2

This

value

indicates

that

the

SQL

statement

executed

successfully,

but

the

number

of

rows

that

were

updated

could

not

be

determined.

-3

This

value

indicates

that

the

SQL

statement

failed.

Other

integer

This

value

is

the

number

of

rows

that

were

updated

by

the

statement.

6.

Optionally,

when

all

statements

have

been

added

to

the

batch,

disable

batching.

Do

this

by

invoking

the

ExecutionContext.setBatching(false)

method.

When

you

disable

batching,

you

can

still

execute

the

batch

implicitly

or

explicitly,

but

no

more

statements

are

added

to

the

batch.

Disabling

batching

is

useful

when

a

batch

already

exists,

and

you

want

to

execute

a

batch

compatible

statement,

rather

than

adding

it

to

the

batch.

If

you

want

to

clear

a

batch

without

executing

it,

invoke

the

ExecutionContext.cancel

method.

7.

If

batch

execution

was

implicit,

perform

a

final,

explicit

executeBatch

to

ensure

that

all

statements

have

been

executed.

Example

of

a

batch

update:

In

the

following

code

fragment,

raises

are

given

to

all

managers

by

performing

UPDATEs

in

a

batch.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

92

Application

Programming

Guide

and

Reference

for

Java™

When

an

error

occurs

during

execution

of

a

statement

in

a

batch,

the

remaining

statements

are

executed,

and

a

BatchUpdateException

is

thrown

after

all

the

statements

in

the

batch

have

executed.

See

“Making

batch

updates

in

JDBC

applications”

on

page

43

for

information

on

how

to

process

a

BatchUpdateException.

To

obtain

information

about

warnings,

use

the

Statement.getWarnings

method

on

the

object

on

which

you

ran

the

executeBatch

method.

You

can

then

retrieve

an

error

description,

SQLSTATE,

and

error

code

for

each

SQLWarning

object.

When

a

batch

is

executed

implicitly

because

the

program

contains

a

statement

that

cannot

be

added

to

the

batch,

the

batch

is

executed

before

the

new

statement

is

processed.

If

an

error

occurs

during

execution

of

the

batch,

the

statement

that

caused

the

batch

to

execute

does

not

execute.

Recommendation:

Turn

autocommit

off

when

you

do

batch

updates

so

that

you

can

control

whether

to

commit

changes

to

already-executed

statements

when

an

error

occurs

during

batch

execution.

#sql

iterator

GetMgr(String);

//

Declare

positioned

iterator

{

GetMgr

deptiter;

//

Declare

object

of

GetMgr

class

String

mgrnum

=

null;

//

Declare

host

variable

for

manager

number

int

raise

=

400®;

//

Declare

raise

amount

int

currentSalary;

//

Declare

current

salary

String

url,

username,

password;

//

Declare

url,

user

ID,

password

...

TestContext

c1

=

new

TestContext

(url,

username,

password,

false);

�1�

ExecutionContext

ec

=

new

ExecutionContext();

�2�

ec.setBatching(true);

�3�

#sql

[c1]

deptiter

=

{SELECT

MGRNO

FROM

DEPARTMENT};

//

Assign

the

result

table

of

the

SELECT

//

to

iterator

object

deptiter

#sql

{FETCH

:deptiter

INTO

:mgrnum};

//

Retrieve

the

first

manager

number

while

(!deptiter.endFetch())

{

//

Check

whether

the

FETCH

returned

a

row

#sql

[c1]

{SELECT

SALARY

INTO

:currentSalary

FROM

EMPLOYEE

WHERE

EMPNO=:mgrnum};

#sql

[c1,

ec]

�4�

{UPDATE

EMPLOYEE

SET

SALARY=:(currentSalary+raise)

WHERE

EMPNO=:mgrnum};

#sql

{FETCH

:deptiter

INTO

:mgrnum

};

//

Fetch

the

next

row

}

ec.executeBatch();

�5�

ec.setBatching(false);

�6�

#sql

[c1]

{COMMIT};

deptiter.close();

//

Close

the

iterator

ec.close();

//

Close

the

execution

context

c1.close();

//

Close

the

connection

}

Figure

56.

Performing

a

batch

update

Chapter

3.

SQLJ

application

programming

93

Iterators

as

passed

variables

for

positioned

UPDATE

or

DELETE

operations

in

an

SQLJ

application

SQLJ

allows

iterators

to

be

passed

between

methods

as

variables.

An

iterator

that

is

used

for

a

positioned

UPDATE

or

DELETE

can

be

identified

only

at

runtime.

The

same

SQLJ

positioned

UPDATE

or

DELETE

statement

can

be

used

with

different

iterators

at

runtime.

If

you

specify

a

value

of

YES

for

-staticpositioned

when

you

customize

your

SQLJ

application

as

part

of

the

program

preparation

process,

the

SQLJ

customizer

prepares

positioned

UPDATE

or

DELETE

statements

to

execute

statically.

(See

Chapter

6,

“Preparing

and

running

JDBC

and

SQLJ

programs,”

on

page

187

for

more

information

on

customization.)

In

this

case,

the

customizer

must

determine

which

iterators

belong

with

which

positioned

UPDATE

or

DELETE

statements.

The

SQLJ

customizer

does

this

by

matching

iterator

data

types

to

data

types

in

the

UPDATE

or

DELETE

statements.

However,

if

there

is

not

a

unique

mapping

of

tables

in

UPDATE

or

DELETE

statements

to

iterator

classes,

the

SQLJ

customizer

cannot

determine

exactly

which

iterators

and

UPDATE

or

DELETE

statements

go

together.

The

SQLJ

customizer

must

arbitrarily

pair

iterators

with

UPDATE

or

DELETE

statements,

which

can

sometimes

result

in

SQL

errors.

The

following

code

fragments

illustrate

this

point.

In

this

example,

only

one

iterator

is

defined.

Two

instances

of

that

iterator

are

defined,

and

each

is

associated

with

a

different

SELECT

statement

that

retrieves

data

from

a

different

table.

Because

the

iterator

is

passed

to

method

doUpdate

as

a

variable,

it

is

impossible

to

know

until

run

time

which

of

the

iterator

instances

is

used

for

the

positioned

UPDATE.

The

DB2®

bind

process

uses

the

first

iterator

instance,

iter1,

when

it

binds

the

DB2

plan.

At

run

time,

if

iter1

is

passed

to

the

doUpdate

method,

as

shown

in

Figure

57,

the

UPDATE

succeeds

because

iter1

and

the

UPDATE

statement

both

use

TABLE1.

If

the

program

is

written

in

a

slightly

different

way,

as

shown

in

Figure

58

on

page

95,

the

DB2

bind

fails,

even

though

the

program

appears

to

be

valid.

#sql

iterator

GeneralIter

(

String

);

public

static

void

main

(

String

args[]

)

{

...

GeneralIter

iter1

=

null;

#sql

[ctxt]

iter1

=

{

SELECT

CHAR_COL1

FROM

TABLE1

};

GeneralIter

iter2

=

null;

#sql

[ctxt]

iter2

=

{

SELECT

CHAR_COL2

FROM

TABLE2

};

...

doUpdate

(

iter1

);

}

public

static

void

doUpdate

(

GeneralIter

iter

)

{

#sql

[ctxt]

{

UPDATE

TABLE1

...

WHERE

CURRENT

OF

:iter

};

}

Figure

57.

Static

positioned

UPDATE

that

succeeds

94

Application

Programming

Guide

and

Reference

for

Java™

In

this

case,

the

DB2

bind

process

associates

iter2

with

the

positioned

UPDATE

because

iter2

comes

first

in

the

program.

When

DB2

binds

the

plan

for

the

program,

the

bind

fails

with

SQLCODE

-509

because

iter2

uses

TABLE2

and

the

UPDATE

uses

TABLE1.

However,

if

this

program

is

allowed

to

bind

successfully,

and

you

pass

iter1

to

the

doUpdate

method,

the

program

runs

successfully.

You

can

avoid

a

bind

time

error

for

a

program

like

the

one

in

Figure

58

by

specifying

the

DB2

BIND

option

SQLERROR(CONTINUE).

However,

this

technique

has

the

drawback

that

it

causes

DB2

to

build

a

package,

regardless

of

the

SQL

errors

that

are

in

the

program.

A

better

technique

is

to

write

the

program

so

that

there

is

a

one-to-one

mapping

between

tables

in

positioned

UPDATE

or

DELETE

statements

and

iterator

classes.

Figure

59

on

page

96

shows

an

example

of

how

to

do

this.

#sql

iterator

GeneralIter

(

String

);

public

static

void

main

(

String

args[]

)

{

...

GeneralIter

iter2

=

null;

#sql

[ctxt]

iter2

=

{

SELECT

CHAR_COL2

FROM

TABLE2

};

GeneralIter

iter1

=

null;

#sql

[ctxt]

iter1

=

{

SELECT

CHAR_COL1

FROM

TABLE1

};

...

doUpdate

(

iter1

);

}

public

static

void

doUpdate

(

GeneralIter

iter

)

{

#sql

[ctxt]

{

UPDATE

TABLE1

...

WHERE

CURRENT

OF

:iter

};

}

Figure

58.

Static

positioned

UPDATE

that

fails

at

bind

time

Chapter

3.

SQLJ

application

programming

95

With

this

method

of

coding,

each

iterator

class

is

associated

with

only

one

table.

Therefore,

the

DB2

bind

process

can

always

associate

the

positioned

UPDATE

statement

with

a

valid

iterator.

Using

scrollable

iterators

in

an

SQLJ

application

In

addition

to

moving

forward,

one

row

at

a

time,

through

a

result

table,

you

might

want

to

move

backward

or

go

directly

to

a

specific

row.

The

DB2

Universal

JDBC

Driver

provides

this

capability.

An

iterator

in

which

you

can

move

forward,

backward,

or

to

a

specific

row

is

called

a

scrollable

iterator.

A

scrollable

iterator

in

SQLJ

is

equivalent

to

the

result

table

of

a

DB2®

cursor

that

is

declared

as

SCROLL.

Like

a

scrollable

cursor,

a

scrollable

iterator

can

be

insensitive

or

sensitive.

A

sensitive

scrollable

iterator

can

be

static

or

dynamic.

Insensitive

means

that

changes

to

the

underlying

table

after

the

iterator

is

opened

are

not

visible

to

the

iterator.

Insensitive

iterators

are

read-only.

Sensitive

means

that

changes

that

the

iterator

or

other

processes

make

to

the

underlying

table

are

visible

to

the

iterator.

If

a

scrollable

iterator

is

static,

the

size

of

the

result

table

and

the

order

of

the

rows

in

the

result

table

do

not

change

after

the

iterator

is

opened.

This

means

that

you

cannot

insert

into

result

tables,

and

if

you

delete

a

row

of

a

result

table,

a

delete

hole

occurs.

If

you

update

a

row

of

the

result

table

so

that

the

row

no

longer

qualifies

for

the

result

table,

an

update

hole

occurs.

Fetching

from

a

hole

results

in

an

SQLException.

If

a

scrollable

iterator

is

dynamic,

the

size

of

the

result

table

and

the

order

of

the

rows

in

the

result

table

can

change

after

the

iterator

is

opened.

Rows

that

are

inserted

or

deleted

with

INSERT

and

DELETE

statements

that

are

executed

by

the

#sql

iterator

Table2Iter(String);

#sql

iterator

Table1Iter(String);

public

static

void

main

(

String

args[]

)

{

...

Table2Iter

iter2

=

null;

#sql

[ctxt]

iter2

=

{

SELECT

CHAR_COL2

FROM

TABLE2

};

Table1Iter

iter1

=

null;

#sql

[ctxt]

iter1

=

{

SELECT

CHAR_COL1

FROM

TABLE1

};

...

doUpdate(iter1);

}

public

static

void

doUpdate

(

Table1Iter

iter

)

{

...

#sql

[ctxt]

{

UPDATE

TABLE1

...

WHERE

CURRENT

OF

:iter

};

...

}

public

static

void

doUpdate

(

Table2Iter

iter

)

{

...

#sql

[ctxt]

{

UPDATE

TABLE2

...

WHERE

CURRENT

OF

:iter

};

...

}

Figure

59.

Static

positioned

UPDATE

that

succeeds

regardless

of

iterator

order

96

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

same

application

process

are

immediately

visible.

Rows

that

are

inserted

or

deleted

with

INSERT

and

DELETE

statements

that

are

executed

by

other

application

processes

are

visible

after

the

changes

are

committed.

To

create

and

use

a

scrollable

iterator,

you

need

to

follow

these

steps:

1.

Specify

an

iterator

declaration

clause

that

includes

the

following

clauses:

v

implements

sqlj.runtime.Scrollable

This

indicates

that

the

iterator

is

scrollable.

v

with

(sensitivity=INSENSITIVE|SENSITIVE)

or

with

(sensitivity=SENSITIVE,

dynamic=true|false)

sensitivity=INSENSITIVE|SENSITIVE

indicates

whether

update

or

delete

operations

on

the

underlying

table

can

be

visible

to

the

iterator.

The

default

sensitivity

is

INSENSITIVE.

dynamic=true|false

indicates

whether

the

size

of

the

result

table

or

the

order

of

the

rows

in

the

result

table

can

change

after

the

iterator

is

opened.

The

default

value

of

dynamic

is

false.

The

iterator

can

be

a

named

or

positioned

iterator.

For

example,

the

following

iterator

declaration

clause

declares

a

positioned,

sensitive,

dynamic,

scrollable

iterator:

#sql

public

iterator

ByPos

implements

sqlj.runtime.Scrollable

with

(sensitivity=SENSITIVE,

dynamic=true)

(String);

The

following

iterator

declaration

clause

declares

a

named,

insensitive,

scrollable

iterator:

#sql

public

iterator

ByName

implements

sqlj.runtime.Scrollable

with

(sensitivity=INSENSITIVE)

(String

EmpNo);

2.

Create

an

iterator

object,

which

is

an

instance

of

your

iterator

class.

3.

If

you

want

to

give

the

SQLJ

runtime

environment

a

hint

about

the

initial

fetch

direction,

use

the

setFetchDirection(int

direction)

method.

direction

can

be

FETCH_FORWARD

or

FETCH_REVERSE.

If

you

do

not

invoke

setFetchDirection,

the

fetch

direction

is

FETCH_FORWARD.

4.

For

each

row

that

you

want

to

access:

v

For

a

named

iterator,

perform

the

following

steps:

a.

Position

the

cursor

using

one

of

the

methods

listed

in

Table

6.

Table

6.

sqlj.runtime.Scrollable

methods

for

positioning

a

scrollable

cursor

Method

Positions

the

cursor

first()

On

the

first

row

of

the

result

table

last()

On

the

last

row

of

the

result

table

previous()1

On

the

previous

row

of

the

result

table

next()

On

the

next

row

of

the

result

table

absolute(int

n)2

If

n>0,

on

row

n

of

the

result

table.

If

n<0,

and

m

is

the

number

of

rows

in

the

result

table,

on

row

m+n+1

of

the

result

table.

relative(int

n)3

If

n>0,

on

the

row

that

is

n

rows

after

the

current

row.

If

n<0,

on

the

row

that

is

n

rows

before

the

current

row.

If

n=0,

on

the

current

row.

afterLast()

After

the

last

row

in

the

result

table

Chapter

3.

SQLJ

application

programming

97

|
|
|

|
|
|

Table

6.

sqlj.runtime.Scrollable

methods

for

positioning

a

scrollable

cursor

(continued)

Method

Positions

the

cursor

beforeFirst()

Before

the

first

row

in

the

result

table

Notes:

1.

If

the

cursor

is

after

the

last

row

of

the

result

table,

this

method

positions

the

cursor

on

the

last

row.

2.

If

the

absolute

value

of

n

is

greater

than

the

number

of

rows

in

the

result

table,

this

method

positions

the

cursor

after

the

last

row

if

n

is

positive,

or

before

the

first

row

if

n

is

negative.

3.

Suppose

that

m

is

the

number

of

rows

in

the

result

table

and

x

is

the

current

row

number

in

the

result

table.

If

n>0

and

x+n>m,

the

iterator

is

positioned

after

the

last

row.

If

n<0

and

x+n<1,

the

iterator

is

positioned

before

the

first

row.

b.

If

you

need

to

know

the

current

cursor

position,

use

the

getRow,

isFirst,

isLast,

isBeforeFirst,

or

isAfterLast

method

to

obtain

this

information.

If

you

need

to

know

the

current

fetch

direction,

invoke

the

getFetchDirection

method.

c.

Use

accessor

methods

to

retrieve

the

current

row

of

the

result

table.

d.

If

update

or

delete

operations

by

the

iterator

or

by

other

means

are

visible

in

the

result

table,

invoke

the

getWarnings

method

to

check

whether

the

current

row

is

a

hole.

v

For

a

positioned

iterator,

perform

the

following

steps:

a.

Use

a

FETCH

statement

with

a

fetch

orientation

clause

to

position

the

iterator

and

retrieve

the

current

row

of

the

result

table.

Table

7

lists

the

clauses

that

you

can

use

to

position

the

cursor.

Table

7.

FETCH

clauses

for

positioning

a

scrollable

cursor

Method

Positions

the

cursor

FIRST

On

the

first

row

of

the

result

table

LAST

On

the

last

row

of

the

result

table

PRIOR1

On

the

previous

row

of

the

result

table

NEXT

On

the

next

row

of

the

result

table

ABSOLUTE(n)2

If

n>0,

on

row

n

of

the

result

table.

If

n<0,

and

m

is

the

number

of

rows

in

the

result

table,

on

row

m+n+1

of

the

result

table.

RELATIVE(n)3

If

n>0,

on

the

row

that

is

n

rows

after

the

current

row.

If

n<0,

on

the

row

that

is

n

rows

before

the

current

row.

If

n=0,

on

the

current

row.

AFTER4

After

the

last

row

in

the

result

table

BEFORE4

Before

the

first

row

in

the

result

table

Notes:

1.

If

the

cursor

is

after

the

last

row

of

the

result

table,

this

method

positions

the

cursor

on

the

last

row.

2.

If

the

absolute

value

of

n

is

greater

than

the

number

of

rows

in

the

result

table,

this

method

positions

the

cursor

after

the

last

row

if

n

is

positive,

or

before

the

first

row

if

n

is

negative.

3.

Suppose

that

m

is

the

number

of

rows

in

the

result

table

and

x

is

the

current

row

number

in

the

result

table.

If

n>0

and

x+n>m,

the

iterator

is

positioned

after

the

last

row.

If

n<0

and

x+n<1,

the

iterator

is

positioned

before

the

first

row.

4.

Values

are

not

assigned

to

host

expressions.

98

Application

Programming

Guide

and

Reference

for

Java™

b.

If

update

or

delete

operations

by

the

iterator

or

by

other

means

are

visible

in

the

result

table,

invoke

the

getWarnings

method

to

check

whether

the

current

row

is

a

hole.

5.

Invoke

the

close

method

to

close

the

iterator.

For

example,

the

following

code

demonstrates

how

to

use

a

named

iterator

to

retrieve

the

employee

number

and

last

name

from

all

rows

from

the

employee

table

in

reverse

order.

The

numbers

to

the

right

of

selected

statements

correspond

to

the

previously-described

steps.

#sql

iterator

ScrollIter

implements

sqlj.runtime.Scrollable

�1�

(String

EmpNo,

String

LastName);

{

ScrollIter

scrliter;

�2�

#sql

[ctxt]

scrliter={SELECT

EMPNO,

LASTNAME

FROM

EMPLOYEE};

scrliter.afterLast();

while

(scrliter.previous())

�4a�

{

System.out.println(scrliter.EmpNo()

+

"

"

�4c�

+

scrliter.LastName());

}

scrliter.close();

�5�

}

Figure

60.

Using

scrollable

iterators

Chapter

3.

SQLJ

application

programming

99

100

Application

Programming

Guide

and

Reference

for

Java™

Chapter

4.

JDBC

and

SQLJ

reference

The

following

topics

contain

reference

information

about

JDBC

methods

and

SQLJ

clauses:

v

“Java,

JDBC,

and

SQL

data

types”

v

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

v

“DataSource

properties

for

the

JDBC/SQLJ

2.0

Driver

for

OS/390”

on

page

113

v

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

114

Java,

JDBC,

and

SQL

data

types

The

following

tables

summarize

the

mappings

of

Java

data

types

to

JDBC

and

SQL

data

types

for

a

DB2

UDB

for

OS/390

or

z/OS

system.

Table

8

summarizes

the

mappings

of

Java

data

types

to

DB2

data

types

for

PreparedStatement.setXXX

or

ResultSet.updateXXX

methods

in

JDBC

programs,

and

for

input

host

expressions

in

SQLJ

programs.

When

more

than

one

Java

data

type

is

listed,

the

first

data

type

is

the

recommended

data

type.

Table

8.

Mappings

of

Java

data

types

to

DB2

data

types

for

updating

DB2

tables

Java

data

type

SQL

data

type

short,

boolean1,

byte1

SMALLINT

int,

java.lang.Integer

INTEGER

long,

java.lang.Long

DECIMAL(19,0)2

long,

java.lang.Long

BIGINT3

float,

java.lang.Float

REAL

double,

java.lang.Double

DOUBLE

java.math.BigDecimal

DECIMAL(p,s)4

java.lang.String

CHAR(n)5

java.lang.String

GRAPHIC(m)6

java.lang.String

VARCHAR(n)7

java.lang.String

VARGRAPHIC(m)8

java.lang.String

CLOB(n)9

byte[]

CHAR(n)

FOR

BIT

DATA5

byte[]

VARCHAR(n)

FOR

BIT

DATA7

byte[]

BLOB(n)9,10

byte[]

ROWID

java.sql.Blob

BLOB(n)10

java.sql.Clob

CLOB(n)10

java.sql.Clob

DBCLOB(m)11

java.sql.Date

DATE

java.sql.Time

TIME

java.sql.Timestamp

TIMESTAMP

java.io.ByteArrayInputStream

BLOB(n)10

java.io.StringReader

CLOB(n)10

java.io.ByteArrayInputStream

CLOB(n)10

©

Copyright

IBM

Corp.

1998,

2004

101

|

|
|

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table

8.

Mappings

of

Java

data

types

to

DB2

data

types

for

updating

DB2

tables

(continued)

Java

data

type

SQL

data

type

com.ibm.db2.jcc.DB2RowID

ROWID

java.net.URL

DATALINK12

Notes:

1.

DB2

has

no

exact

equivalent

for

the

Java

boolean

or

byte

data

types,

but

the

best

fit

is

SMALLINT.

2.

DB2

UDB

in

the

OS/390

or

z/OS

environment

has

no

exact

equivalent

for

the

Java

long

or

java.lang.Long

data

types,

but

the

best

fit

is

DECIMAL(19,0).

3.

The

BIGINT

SQL

type

is

available

only

on

DB2

UDB

for

Linux,

UNIX

and

Windows.

4.

p

is

the

decimal

precision

and

s

is

the

scale

of

the

DB2

column.

You

should

design

financial

applications

so

that

java.math.BigDecimal

columns

map

to

DECIMAL

columns.

If

you

know

the

precision

and

scale

of

a

DECIMAL

column,

updating

data

in

the

DECIMAL

column

with

data

in

a

java.math.BigDecimal

variable

results

in

better

precision

and

performance

than

using

other

combinations

of

data

types.

5.

n<=255.

6.

m<=127.

7.

n<=32704.

8.

m<=16352.

9.

This

mapping

is

valid

only

if

DB2

can

determine

the

data

type

of

the

column.

10.

n<=2147483647.

11.

m<=1073741823.

12.

The

DATALINK

data

type

is

supported

only

by

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows.

Table

9

summarizes

the

mappings

of

DB2

data

types

to

Java

data

types

for

ResultSet.getXXX

methods

in

JDBC

programs,

and

for

iterators

in

SQLJ

programs.

This

table

does

not

list

Java

numeric

wrapper

object

types,

which

are

retrieved

using

ResultSet.getObject.

Table

9.

Mappings

of

DB2

data

types

to

Java

data

types

for

retrieving

data

from

DB2

tables

SQL

data

type

Recommended

Java

data

type

or

Java

object

type

Other

supported

Java

data

types

SMALLINT

short

byte,

int,

long,

float,

double,

java.math.BigDecimal,

boolean,

java.lang.String

INTEGER

int

short,

byte,

long,

float,

double,

java.math.BigDecimal,

boolean,

java.lang.String

BIGINT1

long

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.lang.String

DECIMAL(p,s)

or

NUMERIC(p,s)2

java.math.BigDecimal

long,

int,

short,

byte,

float,

double,

boolean,

java.lang.String

REAL

float

long,

int,

short,

byte,

double,

java.math.BigDecimal,

boolean,

java.lang.String

DOUBLE

double

long,

int,

short,

byte,

float,

java.math.BigDecimal,

boolean,

java.lang.String

102

Application

Programming

Guide

and

Reference

for

Java™

|

||

||

||

|

|

|
|

|

|

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|
|
|

||

|
|
||

|||
|
|

|||
|
|

|||
|
|

|||
|

|||
|
|

|||
|
|

Table

9.

Mappings

of

DB2

data

types

to

Java

data

types

for

retrieving

data

from

DB2

tables

(continued)

SQL

data

type

Recommended

Java

data

type

or

Java

object

type

Other

supported

Java

data

types

CHAR(n)

java.lang.String

long,

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.io.InputStream,

java.io.Reader

VARCHAR(n)

java.lang.String

long,

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.io.InputStream,

java.io.Reader

CHAR(n)

FOR

BIT

DATA

byte[]

java.lang.String,

java.io.InputStream,

java.io.Reader

VARCHAR(n)

FOR

BIT

DATA

byte[]

java.lang.String,

java.io.InputStream,

java.io.Reader

GRAPHIC(m)

java.lang.String

long,

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.io.InputStream,

java.io.Reader

VARGRAPHIC(m)

java.lang.String

long,

int,

short,

byte,

float,

double,

java.math.BigDecimal,

boolean,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.io.InputStream,

java.io.Reader

CLOB(n)

java.sql.Clob

java.lang.String

BLOB(n)

java.sql.Blob

byte[]3

DBCLOB(m)

No

exact

equivalent.

Use

java.sql.Clob.

ROWID

com.ibm.db2.jcc.DB2RowID

byte[]

DATE

java.sql.Date

java.sql.String,

java.sql.Timestamp

TIME

java.sql.Time

java.sql.String,

java.sql.Timestamp

TIMESTAMP

java.sql.Timestamp

java.sql.String,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp

DATALINK

java.net.URL4

Notes:

1.

The

BIGINT

SQL

type

is

available

only

on

DB2

UDB

for

Linux,

UNIX

and

Windows.

2.

You

should

design

financial

applications

so

that

DECIMAL

columns

map

to

java.math.BigDecimal

columns.

If

you

know

the

precision

and

scale

of

a

DECIMAL

column,

retrieving

data

from

that

column

into

a

java.math.BigDecimal

variable

results

in

better

precision

and

performance

than

using

other

combinations

of

data

types.

3.

This

mapping

is

valid

only

if

DB2

can

determine

the

data

type

of

the

column.

4.

The

DATALINK

data

type

is

supported

only

by

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows.

Table

10

on

page

104

summarizes

mappings

of

Java

data

types

to

JDBC

data

types

and

DB2

data

types

for

user-defined

function

and

stored

procedure

parameters.

The

mappings

of

Java

data

types

to

JDBC

data

types

are

for

CallableStatement.registerOutParameter

methods

in

JDBC

programs.

The

mappings

of

Java

data

types

to

DB2

data

types

are

for

parameters

in

stored

procedure

or

user-defined

function

invocations.

Chapter

4.

JDBC

and

SQLJ

reference

103

|

|
|
||

|||
|
|
|
|

|||
|
|
|
|

|||
|

|||
|

|||
|
|
|
|

|||
|
|
|
|

|||

|||

||
|
|

|||

|||

|||

|||
|

|||

|

|

|
|
|

|

|
|

|
|
|
|
|
|

If

more

than

one

Java

data

type

is

listed

in

Table

10,

the

first

data

type

is

the

recommended

data

type.

Table

10.

Mappings

of

Java,

JDBC,

and

SQL

data

types

for

calling

stored

procedures

and

user-defined

functions

Java

data

type

JDBC

data

type

SQL

data

type

boolean1

BIT

SMALLINT

byte1

TINYINT

SMALLINT

short,

java.lang.Integer

SMALLINT

SMALLINT

int,

java.lang.Integer

INTEGER

INTEGER

long

BIGINT

BIGINT2

float,

java.lang.Float

REAL

REAL

float,

java.lang.Float

FLOAT

REAL

double,

java.lang.Double

DOUBLE

DOUBLE

java.math.BigDecimal

NUMERIC

DECIMAL

java.math.BigDecimal

DECIMAL

DECIMAL

java.lang.String

CHAR

CHAR

java.lang.String

CHAR

GRAPHIC

java.lang.String

VARCHAR

VARCHAR

java.lang.String

VARCHAR

VARGRAPHIC

java.lang.String

LONGVARCHAR

VARCHAR

java.lang.String

VARCHAR

CLOB(n)

java.lang.String

LONGVARCHAR

CLOB(n)

java.lang.String

CLOB

CLOB(n)

byte[]

BINARY

CHAR

FOR

BIT

DATA

byte[]

VARBINARY

VARCHAR

FOR

BIT

DATA

byte[]

LONGVARBINARY

VARCHAR

FOR

BIT

DATA

byte[]

VARBINARY

BLOB(n)3

byte[]

LONGVARBINARY

BLOB(n)3

java.sql.Date

DATE

DATE

java.sql.Time

TIME

TIME

java.sql.Timestamp

TIMESTAMP

TIMESTAMP

java.sql.Blob

BLOB

BLOB

java.sql.Clob

CLOB

CLOB

java.sql.Clob

CLOB

DBCLOB

java.io.ByteArrayInputStream

None

BLOB(n)

java.io.StringReader

None

CLOB(n)

java.io.ByteArrayInputStream

None

CLOB(n)

com.ibm.db2.jcc.DB2RowID

com.ibm.db2.jcc.DB2Types.ROWID

ROWID

java.net.URL

DATALINK

DATALINK4

104

Application

Programming

Guide

and

Reference

for

Java™

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

10.

Mappings

of

Java,

JDBC,

and

SQL

data

types

for

calling

stored

procedures

and

user-defined

functions

(continued)

Java

data

type

JDBC

data

type

SQL

data

type

Notes:

1.

A

stored

procedure

or

user-defined

function

that

is

defined

with

a

SMALLINT

parameter

can

be

invoked

with

a

boolean

or

byte

parameter.

However,

this

is

not

recommended.

2.

The

BIGINT

SQL

type

is

available

only

on

DB2

UDB

for

Linux,

UNIX

and

Windows

servers.

3.

This

mapping

is

valid

only

if

DB2

can

determine

the

data

type

of

the

column.

4.

The

DATALINK

data

type

is

supported

only

by

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows.

Table

11

summarizes

mappings

of

the

SQL

parameter

data

types

in

a

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

the

data

types

in

the

corresponding

Java

stored

procedure

or

user-defined

function

method.

For

DB2

UDB

for

Linux,

UNIX

and

Windows,

if

more

than

one

Java

data

type

is

listed

for

an

SQL

data

type,

only

the

first

Java

data

type

is

valid.

For

DB2

UDB

in

the

OS/390

or

z/OS

environment,

if

more

than

one

Java

data

type

is

listed,

and

you

use

a

data

type

other

than

the

first

data

type

as

a

method

parameter,

you

need

to

include

a

method

signature

in

the

EXTERNAL

clause

of

your

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

that

specifies

the

Java

data

types

of

the

method

parameters.

Table

11.

Mappings

of

SQL

data

types

in

a

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

data

types

in

the

corresponding

Java

stored

procedure

or

user-defined

function

program

SQL

data

type

in

CREATE

PROCEDURE

or

CREATE

FUNCTION

Data

type

in

Java

stored

procedure

or

user-defined

function

method

SMALLINT

short,

java.lang.Integer

INTEGER

int,

java.lang.Integer

BIGINT1

long

REAL

float,

java.lang.Float

DOUBLE

double,

java.lang.Double

DECIMAL

java.math.BigDecimal

CHAR

java.lang.String

GRAPHIC

java.lang.String

VARCHAR

java.lang.String

VARGRAPHIC

java.lang.String

CHAR

FOR

BIT

DATA

byte[]

VARCHAR

FOR

BIT

DATA

byte[]

DATE

java.sql.Date

TIME

java.sql.Time

TIMESTAMP

java.sql.Timestamp

BLOB

java.sql.Blob

CLOB

java.sql.Clob

DBCLOB

java.sql.Clob

ROWID

com.ibm.db2.jcc.DB2Types.ROWID

DATALINK

java.net.URL2

Chapter

4.

JDBC

and

SQLJ

reference

105

|
|

|||

|

|
|

|

|

|
|

|
|
|

|
|

|
|
|
|
|

||
|

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table

11.

Mappings

of

SQL

data

types

in

a

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

data

types

in

the

corresponding

Java

stored

procedure

or

user-defined

function

program

(continued)

SQL

data

type

in

CREATE

PROCEDURE

or

CREATE

FUNCTION

Data

type

in

Java

stored

procedure

or

user-defined

function

method

Notes:

1.

The

BIGINT

SQL

type

is

available

only

on

DB2

UDB

for

Linux,

UNIX

and

Windows

servers.

2.

The

DATALINK

data

type

is

supported

only

by

the

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows.

Properties

for

the

DB2

Universal

JDBC

Driver

Properties

define

how

the

connection

to

a

particular

data

source

should

be

made.

Unless

otherwise

noted,

properties

can

be

set

for

a

DataSource

object

or

for

a

Connection

object.

Properties

can

be

set

in

one

of

the

following

ways:

v

Using

setXXX

methods

Properties

are

applicable

to

the

following

DB2-specific

implementations

that

inherit

from

com.ibm.db2.jcc.DB2BaseDataSource:

–

com.ibm.db2.jcc.DB2SimpleDataSource

–

com.ibm.db2.jcc.DB2DataSource

–

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

–

com.ibm.db2.jcc.DB2XADataSource

See

“Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC”

on

page

150

for

a

summary

of

the

property

names

and

data

types.

v

In

a

java.util.Properties

value

in

the

info

parameter

of

a

DriverManager.getConnection

call,

as

shown

in

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

8.

v

In

a

java.lang.String

value

in

the

url

parameter

of

a

DriverManager.getConnection

call,

as

shown

in

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

8.

The

properties

are:

clientAccountingInformation

Specifies

accounting

information

for

the

current

client

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

The

data

type

of

this

property

is

String.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

22

bytes.

A

Java

empty

string

("")

is

valid

for

this

value,

but

a

Java

null

value

is

not

valid.

clientApplicationInformation

Specifies

application

information

for

the

current

client

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

The

data

type

of

this

property

is

String.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

32

bytes.

A

Java

empty

string

("")

is

valid

for

this

value,

but

a

Java

null

value

is

not

valid.

clientUser

Specifies

the

current

client

user

name

for

the

connection.

This

information

is

for

client

accounting

purposes.

Unlike

the

JDBC

connection

user

name,

this

value

can

change

during

a

connection.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

16

bytes.

106

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|
|
|

|

|

|
|

|

clientWorkstation

Specifies

the

workstation

name

for

the

current

client

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

The

data

type

of

this

property

is

String.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

18

bytes.

A

Java

empty

string

("")

is

valid

for

this

value,

but

a

Java

null

value

is

not

valid.

cliSchema

Specifies

the

schema

of

the

DB2

shadow

catalog

tables

or

views

that

are

searched

when

an

application

invokes

a

DatabaseMetaData

method.

currentFunctionPath

Specifies

the

SQL

path

that

is

used

to

resolve

unqualified

data

type

names

and

function

names

in

SQL

statements

that

are

in

JDBC

programs.

The

data

type

of

this

property

is

String.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

2048

bytes.

The

value

is

a

comma-separated

list

of

schema

names.

Those

names

can

be

ordinary

or

delimited

identifiers.

currentPackagePath

Specifies

a

comma-separated

list

of

collections

on

the

server.

The

DB2

server

searches

these

collections

for

the

DB2

packages

for

the

DB2

Universal

JDBC

Driver.

The

precedence

rules

for

the

currentPackagePath

and

currentPackageSet

properties

follow

the

precedence

rules

for

the

DB2

CURRENT

PACKAGESET

and

CURRENT

PACKAGE

PATH

special

registers.

currentPackageSet

Specifies

the

collection

ID

to

search

for

DB2

packages

for

the

DB2

Universal

JDBC

Driver.

The

data

type

of

this

property

is

String.

The

default

is

NULLID

for

Universal

Driver

type

4

connectivity.

For

Universal

Driver

type

2

connectivity,

if

a

value

for

currentPackageSet

is

not

specified,

the

property

value

is

not

set.

If

currentPackageSet

is

set,

its

value

overrides

the

value

of

jdbcCollection.

Multiple

instances

of

the

DB2

Universal

JDBC

Driver

can

be

installed

at

a

database

server

by

running

the

DB2binder

utility

multiple

times.

The

DB2binder

utility

includes

a

-collection

option

that

lets

the

installer

specify

the

collection

ID

for

each

DB2

Universal

JDBC

Driver

instance.

To

choose

an

instance

of

the

DB2

Universal

JDBC

Driver

for

a

connection,

you

specify

a

currentPackageSet

value

that

matches

the

collection

ID

for

one

of

the

DB2

Universal

JDBC

Driver

instances.

The

precedence

rules

for

the

currentPackagePath

and

currentPackageSet

properties

follow

the

precedence

rules

for

the

DB2

CURRENT

PACKAGESET

and

CURRENT

PACKAGE

PATH

special

registers.

currentSQLID

Specifies:

v

The

authorization

ID

that

is

used

for

authorization

checking

on

dynamically

prepared

CREATE,

GRANT,

and

REVOKE

SQL

statements.

v

The

owner

of

a

table

space,

database,

storage

group,

or

synonym

that

is

created

by

a

dynamically

issued

CREATE

statement.

v

The

implicit

qualifier

of

all

table,

view,

alias,

and

index

names

specified

in

dynamic

SQL

statements.

currentSQLID

sets

the

value

in

the

CURRENT

SQLID

special

register

on

a

DB2

UDB

for

z/OS

server.

If

the

currentSQLID

property

is

not

set,

the

default

schema

name

is

the

value

in

the

CURRENT

SQLID

special

register.

Chapter

4.

JDBC

and

SQLJ

reference

107

|
|
|
|
|
|

cursorSensitivity

Specifies

whether

the

java.sql.ResultSet.TYPE_SCROLL_SENSITIVE

value

for

a

JDBC

ResultSet

maps

to

the

SENSITIVE

DYNAMIC

attribute

or

the

SENSITIVE

STATIC

attribute

for

the

underlying

DB2

cursor.

Possible

values

are

TYPE_SCROLL_SENSITIVE_STATIC

and

TYPE_SCROLL_SENSITIVE_DYNAMIC.

The

default

is

TYPE_SCROLL_SENSITIVE_STATIC.

This

property

is

ignored

for

database

servers

that

do

not

support

sensitive

dynamic

scrollable

cursors.

databaseName

Specifies

the

name

for

the

database

server.

This

name

is

used

as

the

database

portion

of

the

connection

URL.

The

name

depends

on

whether

Universal

Driver

type

4

connectivity

or

Universal

Driver

type

2

connectivity

is

used.

For

Universal

Driver

type

4

connectivity:

v

If

the

connection

is

to

a

DB2

for

z/OS

server,

the

databaseName

value

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

v

If

the

connection

is

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server,

the

databaseName

value

is

the

database

name

that

is

defined

during

installation.

v

If

the

connection

is

to

an

IBM

Cloudscape

server,

the

databaseName

value

is

the

fully-qualified

name

of

the

file

that

contains

the

database.

This

name

must

be

enclosed

in

double

quotation

marks

(").

For

example:

"c:/databases/testdb"

If

this

property

is

not

set,

connections

are

made

to

the

local

site.

For

Universal

Driver

type

2

connectivity:

v

The

databaseName

value

is

the

location

name

for

the

data

source.

The

location

name

is

defined

in

the

SYSIBM.LOCATIONS

catalog

table.

If

the

databaseName

property

is

not

set,

the

connection

location

depends

on

the

type

of

environment

in

which

the

connection

is

made.

If

the

connection

is

made

in

an

environment

such

as

a

stored

procedure,

CICS,

or

IMS

environment,

where

a

DB2

connection

to

a

location

is

previously

established,

that

connection

is

used.

The

connection

URL

for

this

case

is

jdbc:default:connection:.

If

a

connection

to

DB2

is

not

previously

established,

the

connection

is

to

the

local

site.

The

connection

URL

for

this

case

is

jdbc:db2os390:

or

jdbc:db2os390sqlj:.

deferPrepares

Specifies

whether

to

defer

prepare

operations

until

run

time.

The

data

type

of

this

property

is

boolean.

The

default

is

true

for

Universal

Driver

type

4

connectivity.

The

property

is

not

applicable

to

Universal

Driver

type

2

connectivity.

Deferring

prepare

operations

can

reduce

network

delays.

However,

if

you

defer

prepare

operations,

you

need

to

ensure

that

input

data

types

match

DB2

table

column

types.

description

A

description

of

the

data

source.

The

data

type

of

this

property

is

String.

driverType

For

the

DataSource

interface,

determines

which

driver

to

use

for

connections.

The

data

type

of

this

property

is

int.

Valid

values

are

2

or

4.

2

is

the

default.

108

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|

|
|

|
|
|

|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|

|

cursorSensitivity

Specifies

whether

the

java.sql.ResultSet.TYPE_SCROLL_SENSITIVE

value

for

a

JDBC

ResultSet

maps

to

the

SENSITIVE

DYNAMIC

attribute

or

the

SENSITIVE

STATIC

attribute

for

the

underlying

DB2

cursor.

Possible

values

are

TYPE_SCROLL_SENSITIVE_STATIC

and

TYPE_SCROLL_SENSITIVE_DYNAMIC.

The

default

is

TYPE_SCROLL_SENSITIVE_STATIC.

This

property

is

ignored

for

database

servers

that

do

not

support

sensitive

dynamic

scrollable

cursors.

fullyMaterializeLobData

Indicates

whether

the

driver

retrieves

LOB

locators

for

FETCH

operations.

The

data

type

of

this

property

is

boolean.

If

the

value

is

true,

LOB

data

is

fully

materialized

within

the

JDBC

driver

when

a

row

is

fetched.

If

this

value

is

false,

LOB

data

is

streamed.

The

driver

uses

locators

internally

to

retrieve

LOB

data

in

chunks

on

an

as-needed

basis

It

is

highly

recommended

that

you

set

this

value

to

false

when

you

retrieve

LOBs

that

contain

large

amounts

of

data.

The

default

is

true.

This

property

has

no

effect

on

stored

procedure

parameters

or

LOBs

that

are

fetched

using

scrollable

cursors.

LOB

stored

procedure

parameters

are

always

fully

materialized.

LOB

locators

are

always

used

for

data

that

is

fetched

using

scrollable

cursors.

gssCredential

For

a

data

source

that

uses

Kerberos

security,

specifies

a

delegated

credential

that

is

passed

from

another

principal.

The

data

type

of

this

property

is

org.ietf.jgss.GSSCredential.

Delegated

credentials

are

used

in

multi-tier

environments,

such

as

when

a

client

connects

to

WebSphere

Application

Server,

which,

in

turn,

connects

to

DB2.

You

obtain

a

value

for

this

property

from

the

client,

by

invoking

the

GSSContext.getDelegCred

method.

GSSContext

is

part

of

the

IBM

Java

Generic

Security

Service

(GSS)

API.

If

you

set

this

property,

you

also

need

to

set

the

Mechanism

and

KerberosServerPrincipal

properties.

This

property

is

applicable

only

to

Universal

Driver

type

4

connectivity.

For

more

information

on

using

Kerberos

security

with

the

DB2

Universal

JDBC

Driver,

see

“Kerberos

security

under

the

DB2

Universal

JDBC

Driver”

on

page

247.

jdbcCollection

Specifies

the

collection

ID

for

the

packages

that

are

used

by

an

instance

of

the

DB2

Universal

JDBC

Driver

at

run

time.

The

data

type

of

jdbcCollection

is

String.

The

default

is

NULLID.

This

property

is

used

with

the

DB2Binder

-collection

option.

The

DB2Binder

utility

must

have

previously

bound

DB2

Universal

JDBC

Driver

packages

at

the

server

using

a

-collection

value

that

matches

the

jdbcCollection

value.

The

jdbcCollection

setting

does

not

determine

the

collection

that

is

used

for

SQLJ

applications,

For

SQLJ,

the

collection

is

determined

by

the

-collection

option

of

the

SQLJ

customizer.

jdbcCollection

does

not

apply

to

Universal

Driver

type

2

connectivity

on

DB2

UDB

for

z/OS.

keepDynamic

Specifies

whether

DB2

keeps

already

prepared

dynamic

SQL

statements

in

the

dynamic

statement

cache

after

commit

points.

The

data

type

of

this

property

is

int.

Valid

values

are

YES

and

NO.

If

the

keepDynamic

property

is

not

specified,

a

Chapter

4.

JDBC

and

SQLJ

reference

109

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

value

is

not

set.

Dynamic

statement

caching

is

done

if

the

database

server

is

set

up

to

do

dynamic

statement

caching.

This

property

is

used

with

the

DB2Binder

-keepdynamic

option.

The

keepDynamic

property

value

that

is

specified

must

match

the

-keepdynamic

value

that

was

specified

when

DB2Binder

was

run.

This

property

is

applicable

only

for

connections

to

DB2

for

z/OS

database

servers.

kerberosServerPrincipal

For

a

data

source

that

uses

Kerberos

security,

specifies

the

name

that

is

used

for

the

data

source

when

it

is

registered

with

the

Kerberos

Key

Distribution

Center

(KDC).

The

data

type

of

this

property

is

String.

This

property

is

applicable

only

to

Universal

Driver

type

4

connectivity.

loginTimeout

The

maximum

time

in

seconds

to

wait

for

a

connection

to

a

data

source,

or

for

SQL

requests

to

that

data

source.

After

the

number

of

seconds

that

are

specified

by

loginTimeout

have

elapsed,

the

driver

closes

the

connection

to

the

data

source.

The

data

type

of

this

property

is

int.

The

default

is

0.

A

value

of

0

means

that

the

timeout

value

is

the

default

system

timeout

value.

This

property

is

not

supported

for

Universal

Driver

type

2

connectivity

on

DB2

UDB

in

the

z/OS

or

OS/390

environment.

logWriter

The

character

output

stream

to

which

all

logging

and

trace

messages

for

the

DataSource

object

are

printed.

The

data

type

of

this

property

is

java.io.PrinterWriter.

The

default

value

is

null,

which

means

that

no

logging

or

tracing

for

the

DataSource

is

output.

password

The

password

to

use

for

establishing

connections.

The

data

type

of

this

property

is

String.

When

you

use

the

DataSource

interface

to

establish

a

connection,

you

can

override

this

property

value

by

invoking

this

form

of

the

DataSource.getConnection

method:

getConnection(user,

password);

pkList

Specifies

a

package

list

that

is

used

for

the

underlying

RRSAF

CREATE

THREAD

call

when

a

JDBC

or

SQLJ

connection

to

a

data

source

is

established.

pkList

is

applicable

only

to

Universal

Driver

type

2

connectivity.

Specify

this

property

if

you

do

not

bind

plans

for

your

SQLJ

programs

or

for

the

JDBC

driver.

If

you

specify

this

property,

do

not

specify

planName.

Recommendation:

Use

pkList

instead

of

planName.

The

format

of

the

package

list

is:

��

�

,

collection-ID.*

��

pkList

overrides

the

value

of

the

db2.jcc.pkList

global

property.

If

pkList,

planName,

and

db2.jcc.pkList

are

not

specified,

the

value

of

pkList

is

NULLID.*.

110

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|
|

|
|

|

planName

Specifies

a

DB2

plan

name

that

is

used

for

the

underlying

RRSAF

CREATE

THREAD

call

when

a

JDBC

or

SQLJ

connection

to

a

data

source

is

established.

Specify

this

property

if

you

bind

plans

for

your

SQLJ

programs

and

for

the

JDBC

driver

packages.

If

you

specify

this

property,

do

not

specify

pkList.

planName

is

applicable

only

to

Universal

Driver

type

2

connectivity.

planName

overrides

the

value

of

the

db2.jcc.planName

global

property.

If

pkList,

planName,

and

db2.jcc.planName

are

not

specified,

NULLID.*

is

used

as

the

package

list

for

the

underlying

CREATE

THREAD

call.

portNumber

The

port

number

where

the

DRDA®

server

is

listening

for

requests.

The

data

type

of

this

property

is

int.

This

property

is

applicable

only

to

Universal

Driver

type

4

connectivity.

readOnly

Specifies

whether

the

connection

is

read-only.

The

data

type

of

this

property

is

boolean.

The

default

is

false.

resultSetHoldability

Specifies

whether

cursors

remain

open

after

a

commit

operation.

The

data

type

of

this

property

is

int.

Valid

values

are

com.ibm.db2.jcc.DB2BaseDataSource.HOLD_CURSORS_OVER_COMMIT

or

com.ibm.db2.jcc.DB2BaseDataSource.CLOSE_CURSORS_AT_COMMIT.

These

values

are

the

same

as

the

ResultSet.HOLD_CURSORS_OVER_COMMIT

and

ResultSet.CLOSE_CURSORS_AT_COMMIT

constants

that

are

defined

in

JDBC

3.0.

retrieveMessagesFromServerOnGetMessage

Specifies

whether

JDBC

SQLException.getMessage

calls

cause

the

DB2

Universal

JDBC

Driver

to

invoke

a

DB2

UDB

for

OS/390

or

z/OS

stored

procedure

that

retrieves

the

message

text

for

the

error.

The

data

type

of

this

property

is

boolean.

The

default

is

false,

which

means

that

the

full

message

text

is

not

returned

to

the

client.

An

alternative

to

setting

this

property

to

true

is

to

use

the

DB2-only

DB2Sqlca.getMessage

method

in

applications.

Both

techniques

result

in

a

stored

procedure

call,

which

starts

a

unit

of

work.

securityMechanism

Specifies

the

DRDA

security

mechanism.

The

data

type

of

this

property

in

int.

Possible

values

are:

CLEAR_TEXT_PASSWORD_SECURITY

User

ID

and

password

USER_ONLY_SECURITY

User

ID

only

ENCRYPTED_PASSWORD_SECURITY

User

ID,

encrypted

password

ENCRYPTED_USER_AND_PASSWORD_SECURITY

Encrypted

user

ID

and

password

KERBEROS_SECURITY

Kerberos

If

this

property

is

specified,

the

specified

security

mechanism

is

the

only

mechanism

that

is

used.

If

the

security

mechanism

is

not

supported

by

the

connection,

an

exception

is

thrown.

Chapter

4.

JDBC

and

SQLJ

reference

111

|

If

no

value

is

specified

for

this

property,

the

requester

attempts

to

connect

using

the

most

secure

mechanism

that

is

possible.

If

a

connection

cannot

be

established

because

the

server

does

not

support

that

security

mechanism,

the

server

returns

a

list

of

alternate

choices

to

the

requester.

The

requester

tries

each

of

those

security

mechanisms

until

a

connection

can

be

established

with

one

of

them.

If

there

are

no

alternative

choices,

or

if

all

alternative

choices

fail,

an

exception

is

thrown.

This

property

is

applicable

only

to

Universal

Driver

type

4

connectivity.

serverName

The

host

name

or

the

TCP/IP

address

of

the

data

source.

The

data

type

of

this

property

is

String.

This

property

is

applicable

only

to

Universal

Driver

type

4

connectivity.

traceFile

Specifies

the

name

of

a

file

into

which

the

DB2

Universal

JDBC

Driver

writes

trace

information.

The

data

type

of

this

property

is

String.

The

traceFile

property

is

an

alternative

to

the

logWriter

property

for

directing

the

output

trace

stream

to

a

file.

For

Universal

Driver

type

2

connectivity,

the

db2.jcc.override.traceFile

global

property

value

overrides

the

traceFile

property

value.

Recommendation:

Set

the

db2.jcc.override.traceFile

global

property,

rather

than

setting

the

traceFile

property

for

individual

connections.

traceFileAppend

Specifies

whether

to

append

to

or

overwrite

the

file

that

is

specified

by

the

traceFile

property.

The

data

type

of

this

property

is

boolean.

The

default

is

false,

which

means

that

the

file

that

is

specified

by

the

traceFile

property

is

overwritten.

traceLevel

Specifies

what

to

trace.

The

data

type

of

this

property

is

int.

You

can

specify

one

or

more

of

the

following

traces

with

the

traceLevel

property:

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ

v

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL

To

specify

more

than

one

trace,

use

one

of

these

techniques:

v

Use

bitwise

OR

(|)

operators

with

two

or

more

trace

values.

For

example,

to

trace

DRDA

flows

and

connection

calls,

specify

this

value

for

traceLevel:

TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v

Use

a

bitwise

complement

(

~)

operator

with

a

trace

value

to

specify

all

except

a

certain

trace.

For

example,

to

trace

everything

except

DRDA

flows,

specify

this

value

for

traceLevel:

112

Application

Programming

Guide

and

Reference

for

Java™

|

|

|

|
|

|
|

~TRACE_DRDA_FLOWS

user

The

user

ID

to

use

for

establishing

connections.

The

data

type

of

this

property

is

String.

When

you

use

the

DataSource

interface

to

establish

a

connection,

you

can

override

this

property

value

by

invoking

this

form

of

the

DataSource.getConnection

method:

getConnection(user,

password);

DataSource

properties

for

the

JDBC/SQLJ

2.0

Driver

for

OS/390

A

DB2DataSource

or

DB2SimpleDataSource

class

provides

a

set

of

properties

that

define

how

the

connection

to

a

particular

data

source

should

be

made.

Those

properties

are

usually

set

when

a

DataSource

object

is

created

and

deployed.

Those

properties

are:

databaseName

Specifies

the

location

name

to

be

used

when

establishing

connections

using

the

DataSource

object.

If

the

location

name

is

not

the

local

site

(see

the

description

of

the

DB2SQLJSSID

property

in

“The

SQLJ/JDBC

run-time

properties

file”

on

page

236),

the

location

name

must

be

defined

in

SYSIBM.LOCATIONS.

If

the

location

name

is

the

local

site,

the

location

name

must

have

been

specified

in

field

DB2

LOCATION

NAME

of

the

DISTRIBUTED

DATA

FACILITY

panel

during

the

DB2

installation.

If

you

do

not

set

the

databaseName

property,

connections

that

are

established

using

this

data

source

object

are

to

the

local

site.

This

property

has

data

type

String.

The

default

value

is

null.

description

Describes

the

data

source

object.

This

property

has

data

type

String.

The

default

value

is

null.

user

Specifies

the

z/OS

user

ID

to

be

used

when

using

the

DataSource

object

to

establish

a

connection

to

the

data

source.

DB2

validates

the

user

ID

and

password.

You

can

override

this

property

by

calling

the

DataSource.getConnection

method

with

the

user

parameter.

If

you

set

the

user

property,

or

specify

user

parameter

in

the

DataSource.getConnection

method

call,

you

must

also

set

the

password

property,

or

specify

the

password

parameter

in

the

DataSource.getConnection

method

call.

This

property

has

data

type

String.

password

Specifies

a

corresponding

password

for

the

user

property.

You

can

override

this

property

by

calling

the

DataSource.getConnection

method

with

the

password

parameter.

This

property

has

data

type

String.

The

default

value

is

null.

planName

Specifies

the

name

of

the

plan

that

DB2

allocates

for

connections

that

are

established

using

the

data

source

object.

This

property

has

data

type

String.

The

default

value

is

DSNJDBC.

loginTimeout

Specifies

the

maximum

time

in

seconds

to

wait

for

the

DataSource

object

to

connect

to

a

data

source.

A

value

of

0

means

that

the

timeout

value

is

the

default

system

timeout

value,

which

is

specified

by

the

db2.connpool.connect.create.timeout

property

in

the

db2sqljjdbc.properties

file.

This

property

has

data

type

int.

The

default

value

is

0.

Chapter

4.

JDBC

and

SQLJ

reference

113

Table

12

lists

the

methods

that

you

use

to

set

and

retrieve

the

property

values.

Table

12.

getXXX

and

setXXX

methods

for

DataSource

properties

under

the

JDBC/SQLJ

2.0

Driver

for

OS/390

Property

getXXX

method

setXXX

method

databaseName

String

getDatabaseName()

void

setDatabaseName(String

location-name)

description

String

getDescription()

void

setDescription(String

description)

loginTimeout

int

getLoginTimeout()

void

setLoginTimeout(int

timeout)

password

None

void

setPassword(String

password)

planName

String

getPlanName()

void

setPlanName(String

plan-name)

user

String

getUser()

void

setUser(String

user-name)

Comparison

of

driver

support

for

JDBC

APIs

The

following

tables

list

the

JDBC

interfaces

and

indicate

which

drivers

supports

them.

The

drivers

and

their

supported

platforms

are:

Table

13.

JDBC

drivers

for

DB2

UDB

JDBC

driver

name

Associated

DB2

UDB

DB2

Universal

JDBC

Driver

DB2

UDB

for

Linux,

UNIX

and

Windows

or

DB2

UDB

for

z/OS

JDBC/SQLJ

2.0

Driver

for

OS/390

DB2

UDB

for

z/OS

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

DB2

UDB

for

Linux,

UNIX

and

Windows

Table

14.

DB2

JDBC

support

for

Array

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getArray

No

No

No

getBaseType

No

No

No

getBaseTypeName

No

No

No

getResultSet

No

No

No

Table

15.

DB2

JDBC

support

for

BatchUpdateException

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.lang.Exception

Yes

Yes

Yes

getUpdateCounts

Yes

Yes

Yes

114

Application

Programming

Guide

and

Reference

for

Java™

|

|
|

||

||

||
|

||

|
|
|

|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||
|

Table

16.

DB2

JDBC

support

for

Blob

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getBinaryStream

Yes

Yes

Yes

getBytes

Yes

Yes

Yes

length

Yes

Yes

Yes

position

Yes

Yes

Yes

setBinaryStream1

Yes

No

No

setBytes1

Yes

No

No

truncate1

Yes

No

No

Notes:

1.

This

is

a

JDBC

3.0

method.

Table

17.

DB2

JDBC

support

for

CallableStatement

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.sql.Statement

Yes

Yes

Yes

Methods

inherited

from

java.sql.PreparedStatement

Yes

Yes

Yes

getArray

No

No

No

getBigDecimal

Yes

Yes

Yes

getBlob

Yes

Yes

Yes

getBoolean

Yes

Yes

Yes

getByte

Yes

Yes

Yes

getBytes

Yes

Yes

Yes

getClob

Yes

Yes

Yes

getDate

Yes

Yes

Yes

getDouble

Yes

Yes

Yes

getFloat

Yes

Yes

Yes

getInt

Yes

Yes

Yes

getLong

Yes

Yes

Yes

getObject

Yes1

Yes1

Yes1

getRef

No

No

No

getShort

Yes

Yes

Yes

getString

Yes

Yes

Yes

getTime

Yes

Yes

Yes

getTimestamp

Yes

Yes

Yes

registerOutParameter2

Yes

Yes

Yes

wasNull

Yes

Yes

Yes

Chapter

4.

JDBC

and

SQLJ

reference

115

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

|

|
|

||

|
|
|
|
|

|
|
|

|
|
|||

|
|
|||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

17.

DB2

JDBC

support

for

CallableStatement

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Notes:

1.

The

following

form

of

the

getObject

method

is

not

supported:

getObject(int

parameterIndex,

java.util.Map

map)

2.

The

following

form

of

the

registerOutParameter

method

is

not

supported:

registerOutParameter(int

parameterIndex,

int

jdbcType,

String

typeName)

Table

18.

DB2

JDBC

support

for

Clob

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getAsciiStream

Yes

Yes

Yes

getCharacterStream

Yes

Yes

Yes

getSubString

Yes

Yes

Yes

length

Yes

Yes

Yes

position

Yes

Yes

Yes

setAsciiStream1

Yes

No

No

setCharacterStream1

Yes

No

No

setString1

Yes

No

No

truncate1

Yes

No

No

Notes:

1.

This

is

a

JDBC

3.0

method.

Table

19.

DB2

JDBC

support

for

Connection

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

clearWarnings

Yes

Yes

Yes

close

Yes

Yes

Yes

commit

Yes

Yes

Yes

createStatement

Yes1

Yes

2

Yes

getAutoCommit

Yes

Yes

Yes

getCatalog

Yes

Yes

Yes

getMetaData

Yes

Yes

Yes

getTransactionIsolation

Yes

Yes

Yes

getTypeMap

No

No

No

getWarnings

Yes

Yes

Yes

isClosed

Yes

Yes

Yes

isReadOnly

Yes

Yes

Yes

nativeSQL

Yes

Yes

Yes

116

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

19.

DB2

JDBC

support

for

Connection

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

prepareCall

Yes

Yes3

Yes

prepareStatement

Yes4

Yes

Yes

releaseSavepoint

Yes5

No

No

rollback

Yes

Yes6

Yes6

setAutoCommit

Yes

Yes

Yes

setCatalog

Yes

Yes

Yes

setReadOnly

Yes7

Yes7

Yes

setSavepoint

Yes5

No

No

setTransactionIsolation

Yes

Yes

Yes

setTypeMap

No

No

No

Notes:

1.

In

addition

to

the

JDBC

2.0

forms

of

createStatement

statement,

the

following

JDBC

3.0

form

of

createStatement

is

supported:

createStatement(int

resultSetType,

int

resultSetConcurrency,

int

resultSetHoldability)

2.

For

the

following

form

of

createStatement,

a

resultSetType

value

of

TYPE_FORWARD_ONLY

and

a

resultSetConcurrency

value

of

CONCUR_READ_ONLY

are

supported:

createStatement(int

resultSetType,

int

resultSetConcurrency)

3.

The

following

form

of

prepareCall

is

not

supported:

prepareCall(String

sql,

int

resultSetType,

int

resultSetConcurrency)

4.

In

addition

to

the

other

forms

of

prepareStatement,

the

DB2

Universal

JDBC

Driver

supports

the

following

JDBC

3.0

form:

prepareStatement(String

sql,

int

autoGeneratedKeys)

5.

This

is

a

JDBC

3.0

method.

6.

The

JDBC

3.0

rollback(Savepoint

savepoint)

method

is

not

supported.

7.

The

driver

does

not

use

the

setting.

For

the

DB2

Universal

JDBC

Driver,

a

connection

can

be

set

as

read-only

through

the

readOnly

property

for

a

Connection

or

DataSource

object.

Table

20.

DB2

JDBC

support

for

ConnectionEvent

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.util.EventObject

Yes

Yes

Yes

getSQLException

Yes

Yes

Yes

Table

21.

DB2

JDBC

support

for

ConnectionEventListener

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

connectionClosed

Yes

Yes

Yes

connectionErrorOccurred

Yes

Yes

Yes

Chapter

4.

JDBC

and

SQLJ

reference

117

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|
|

|
|
|

|
|

|

|

|

|
|

|

|

|

|
|
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||
|

Table

22.

DB2

JDBC

support

for

ConnectionPoolDataSource

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getLoginTimeout

Yes

Yes

Yes

getLogWriter

Yes

Yes

Yes

getPooledConnection

Yes

Yes

Yes

setLoginTimeout

Yes1

Yes

Yes

setLogWriter

Yes

Yes

Yes

Note:

1.

This

method

is

not

supported

for

Universal

Driver

type

2

connectivity

on

DB2

UDB

in

the

OS/390

or

z/OS

environment.

Table

23.

DB2

JDBC

support

for

DatabaseMetaData

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

allProceduresAreCallable

Yes

Yes

Yes

allTablesAreSelectable

Yes

Yes

Yes

dataDefinitionCausesTransactionCommit

Yes

Yes

Yes

dataDefinitionIgnoredInTransactions

Yes

Yes

Yes

deletesAreDetected

Yes

Yes

Yes

doesMaxRowSizeIncludeBlobs

Yes

Yes

Yes

getAttributes

Yes

No

No

getBestRowIdentifier

Yes

Yes

Yes

getCatalogs

Yes

Yes

Yes

getCatalogSeparator

Yes

Yes

Yes

getCatalogTerm

Yes

Yes

Yes

getColumnPrivileges

Yes

Yes

Yes

getColumns

Yes1

Yes

Yes

getConnection

Yes

Yes

Yes

getCrossReference

Yes

Yes

Yes

getDatabaseMajorVersion

Yes

No

No

getDatabaseMinorVersion

Yes

No

No

getDatabaseProductName

Yes

Yes

Yes

getDatabaseProductVersion

Yes

Yes

Yes

getDefaultTransactionIsolation

Yes

Yes

Yes

getDriverMajorVersion

Yes

Yes

Yes

getDriverMinorVersion

Yes

Yes

Yes

getDriverName

Yes

Yes

Yes

getDriverVersion

Yes

Yes

Yes

getExportedKeys

Yes

Yes

Yes

118

Application

Programming

Guide

and

Reference

for

Java™

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

|

|
|
|

||

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

23.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getExtraNameCharacters

Yes

Yes

Yes

getIdentifierQuoteString

Yes

Yes

Yes

getImportedKeys

Yes

Yes

Yes

getIndexInfo

Yes

Yes

Yes

getJDBCMajorVersion

Yes

No

No

getJDBCMinorVersion

Yes

No

No

getMaxBinaryLiteralLength

Yes

Yes

Yes

getMaxCatalogNameLength

Yes

Yes

Yes

getMaxCharLiteralLength

Yes

Yes

Yes

getMaxColumnNameLength

Yes

Yes

Yes

getMaxColumnsInGroupBy

Yes

Yes

Yes

getMaxColumnsInIndex

Yes

Yes

Yes

getMaxColumnsInOrderBy

Yes

Yes

Yes

getMaxColumnsInSelect

Yes

Yes

Yes

getMaxColumnsInTable

Yes

Yes

Yes

getMaxConnections

Yes

Yes

Yes

getMaxCursorNameLength

Yes

Yes

Yes

getMaxIndexLength

Yes

Yes

Yes

getMaxProcedureNameLength

Yes

Yes

Yes

getMaxRowSize

Yes

Yes

Yes

getMaxSchemaNameLength

Yes

Yes

Yes

getMaxStatementLength

Yes

Yes

Yes

getMaxStatements

Yes

Yes

Yes

getMaxTableNameLength

Yes

Yes

Yes

getMaxTablesInSelect

Yes

Yes

Yes

getMaxUserNameLength

Yes

Yes

Yes

getNumericFunctions

Yes

Yes

Yes

getPrimaryKeys

Yes

Yes

Yes

getProcedureColumns

Yes

Yes

Yes

getProcedures

Yes

Yes

Yes

getProcedureTerm

Yes

Yes

Yes

getResultSetHoldability

Yes

No

No

getSchemas

Yes1

Yes

Yes

getSchemaTerm

Yes

Yes

Yes

getSearchStringEscape

Yes

Yes

Yes

getSQLKeywords

Yes

Yes

Yes

Chapter

4.

JDBC

and

SQLJ

reference

119

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

23.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getSQLStateType

Yes

No

No

getStringFunctions

Yes

Yes

Yes

getSuperTables

Yes2

No

No

getSuperTypes

Yes2

No

No

getSystemFunctions

Yes

Yes

Yes

getTablePrivileges

Yes

Yes

Yes

getTables

Yes1

Yes

Yes

getTableTypes

Yes

Yes

Yes

getTimeDateFunctions

Yes

Yes

Yes

getTypeInfo

Yes

Yes

Yes

getUDTs

No

No

Yes2

getURL

Yes

Yes

Yes

getUserName

Yes

Yes

Yes

getVersionColumns

Yes

Yes

Yes

insertsAreDetected

Yes

Yes

Yes

isCatalogAtStart

Yes

Yes

Yes

isReadOnly

Yes

Yes

Yes

nullPlusNonNullIsNull

Yes

Yes

Yes

nullsAreSortedAtEnd

Yes

Yes

Yes

nullsAreSortedAtStart

Yes

Yes

Yes

nullsAreSortedHigh

Yes

Yes

Yes

nullsAreSortedLow

Yes

Yes

Yes

othersDeletesAreVisible

Yes

Yes

Yes

othersInsertsAreVisible

Yes

Yes

Yes

othersUpdatesAreVisible

Yes

Yes

Yes

ownDeletesAreVisible

Yes

Yes

Yes

ownInsertsAreVisible

Yes

Yes

Yes

ownUpdatesAreVisible

Yes

Yes

Yes

storesLowerCaseIdentifiers

Yes

Yes

Yes

storesLowerCaseQuotedIdentifiers

Yes

Yes

Yes

storesMixedCaseIdentifiers

Yes

Yes

Yes

storesMixedCaseQuotedIdentifiers

Yes

Yes

Yes

storesUpperCaseIdentifiers

Yes

Yes

Yes

storesUpperCaseQuotedIdentifiers

Yes

Yes

Yes

supportsAlterTableWithAddColumn

Yes

Yes

Yes

supportsAlterTableWithDropColumn

Yes

Yes

Yes

120

Application

Programming

Guide

and

Reference

for

Java™

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

23.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

supportsANSI92EntryLevelSQL

Yes

Yes

Yes

supportsANSI92FullSQL

Yes

Yes

Yes

supportsANSI92IntermediateSQL

Yes

Yes

Yes

supportsBatchUpdates

Yes

Yes

Yes

supportsCatalogsInDataManipulation

Yes

Yes

Yes

supportsCatalogsInIndexDefinitions

Yes

Yes

Yes

supportsCatalogsInPrivilegeDefinitions

Yes

Yes

Yes

supportsCatalogsInProcedureCalls

Yes

Yes

Yes

supportsCatalogsInTableDefinitions

Yes

Yes

Yes

SupportsColumnAliasing

Yes

Yes

Yes

supportsConvert

Yes

Yes

Yes

supportsCoreSQLGrammar

Yes

Yes

Yes

supportsCorrelatedSubqueries

Yes

Yes

Yes

supportsDataDefinitionAndDataManipulationTransactions

Yes

Yes

Yes

supportsDataManipulationTransactionsOnly

Yes

Yes

Yes

supportsDifferentTableCorrelationNames

Yes

Yes

Yes

supportsExpressionsInOrderBy

Yes

Yes

Yes

supportsExtendedSQLGrammar

Yes

Yes

Yes

supportsFullOuterJoins

Yes

Yes

Yes

supportsGetGeneratedKeys

Yes

No

No

supportsGroupBy

Yes

Yes

Yes

supportsGroupByBeyondSelect

Yes

Yes

Yes

supportsGroupByUnrelated

Yes

Yes

Yes

supportsIntegrityEnhancementFacility

Yes

Yes

Yes

supportsLikeEscapeClause

Yes

Yes

Yes

supportsLimitedOuterJoins

Yes

Yes

Yes

supportsMinimumSQLGrammar

Yes

Yes

Yes

supportsMixedCaseIdentifiers

Yes

Yes

Yes

supportsMixedCaseQuotedIdentifiers

Yes

Yes

Yes

supportsMultipleOpenResults

Yes

Yes

No

supportsMultipleResultSets

Yes

Yes

Yes

supportsMultipleTransactions

Yes

Yes

Yes

supportsNamedParameters

Yes

No

No

supportsNonNullableColumns

Yes

Yes

Yes

supportsOpenCursorsAcross

Commit

Yes

Yes

Yes

supportsOpenCursorsAcross

Rollback

Yes

Yes

Yes

Chapter

4.

JDBC

and

SQLJ

reference

121

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

23.

DB2

JDBC

support

for

DatabaseMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

supportsOpenStatementsAcrossCommit

Yes

Yes

Yes

supportsOpenStatementsAcrossRollback

Yes

Yes

Yes

supportsOrderByUnrelated

Yes

Yes

Yes

supportsOuterJoins

Yes

Yes

Yes

supportsPositionedDelete

Yes

Yes

Yes

supportsPositionedUpdate

Yes

Yes

Yes

supportsResultSetConcurrency

Yes

Yes

Yes

supportsResultSetHoldability

Yes

No

No

supportsResultSetType

Yes

Yes

Yes

supportsSavepoints

Yes

No

No

supportsSchemasInDataManipulation

Yes

Yes

Yes

supportsSchemasInIndexDefinitions

Yes

Yes

Yes

supportsSchemasInPrivilegeDefinitions

Yes

Yes

Yes

supportsSchemasInProcedureCalls

Yes

Yes

Yes

supportsSchemasInTableDefinitions

Yes

Yes

Yes

supportsSelectForUpdate

Yes

Yes

Yes

supportsStoredProcedures

Yes

Yes

Yes

supportsSubqueriesInComparisons

Yes

Yes

Yes

supportsSubqueriesInExists

Yes

Yes

Yes

supportsSubqueriesInIns

Yes

Yes

Yes

supportsSubqueriesInQuantifieds

Yes

Yes

Yes

supportsSuperTables

Yes

No

No

supportsSuperTypes

Yes

No

No

supportsTableCorrelationNames

Yes

Yes

Yes

supportsTransactionIsolationLevel

Yes

Yes

Yes

supportsTransactions

Yes

Yes

Yes

supportsUnion

Yes

Yes

Yes

supportsUnionAll

Yes

Yes

Yes

updatesAreDetected

Yes

Yes

Yes

usesLocalFilePerTable

Yes

Yes

Yes

usesLocalFiles

Yes

Yes

Yes

Notes:

1.

The

JDBC

3.0

version

of

this

method

is

supported.

2.

The

method

can

be

executed,

but

it

returns

an

empty

ResultSet.

122

Application

Programming

Guide

and

Reference

for

Java™

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|
|

Table

24.

DB2

JDBC

support

for

DataSource

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getConnection

Yes

Yes

Yes

getLoginTimeout

Yes

Yes

Yes1

getLogWriter

Yes

Yes

Yes

setLoginTimeout

Yes2

Yes

Yes1

setLogWriter

Yes

Yes

Yes

Notes:

1.

The

DB2

JDBC

Type

2

Driver

does

not

use

this

setting.

2.

This

method

is

not

supported

for

Universal

Driver

type

2

connectivity

on

DB2

UDB

in

the

OS/390

or

z/OS

environment.

Table

25.

DB2

JDBC

support

for

DataTruncation

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.lang.Throwable

Yes

Yes

Yes

Methods

inherited

from

java.sql.SQLException

Yes

Yes

Yes

Methods

inherited

from

java.sql.SQLWarning

Yes

Yes

Yes

getDataSize

Yes

Yes

Yes

getIndex

Yes

Yes

Yes

getParameter

Yes

Yes

Yes

getRead

Yes

Yes

Yes

getTransferSize

Yes

Yes

Yes

Table

26.

DB2

JDBC

support

for

Driver

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

acceptsURL

Yes

Yes

Yes

connect

Yes

Yes

Yes

getMajorVersion

Yes

Yes

Yes

getMinorVersion

Yes

Yes

Yes

getPropertyInfo

Yes

Yes

Yes

jdbcCompliant

Yes

Yes

Yes

Table

27.

DB2

JDBC

support

for

DriverManager

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

deregisterDriver

Yes

Yes

Yes

Chapter

4.

JDBC

and

SQLJ

reference

123

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

|

|

|
|
|

||

|
|
|
|
|

|
|
|

|
|
|||

|
|
|||

|
|
|||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

Table

27.

DB2

JDBC

support

for

DriverManager

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getConnection

Yes

Yes

Yes

getDriver

Yes

Yes

Yes

getDrivers

Yes

Yes

Yes

getLoginTimeout

Yes

Yes

Yes1

getLogStream

Yes

Yes

Yes

getLogWriter

Yes

Yes

Yes

println

Yes

Yes

Yes

registerDriver

Yes

Yes

Yes

setLoginTimeout

Yes2

Yes

Yes1

setLogStream

Yes

Yes

Yes

setLogWriter

Yes

Yes

Yes

Notes:

1.

The

DB2

JDBC

Type

2

Driver

does

not

use

this

setting.

2.

This

method

is

not

supported

for

Universal

Driver

type

2

connectivity

on

DB2

UDB

in

the

OS/390

or

z/OS

environment.

Table

28.

DB2

JDBC

support

for

ParameterMetaData

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getParameterClassName

No

No

No

getParameterCount

Yes

No

No

getParameterMode

Yes

No

No

getParameterType

Yes

No

No

getParameterTypeName

Yes

No

No

getPrecision

Yes

No

No

getScale

Yes

No

No

isNullable

Yes

No

No

isSigned

Yes

No

No

Table

29.

DB2

JDBC

support

for

PooledConnection

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

addConnectionEventListener

Yes

Yes

Yes

close

Yes

Yes

Yes

getConnection

Yes

Yes

Yes

removeConnectionEventListener

Yes

Yes

Yes

124

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|
|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||
|

Table

30.

DB2

JDBC

support

for

PreparedStatement

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.sql.Statement

Yes

Yes

Yes

addBatch

Yes

Yes

Yes

clearParameters

Yes

Yes

Yes

execute

Yes

Yes

Yes

executeQuery

Yes

Yes

Yes

executeUpdate

Yes

Yes

Yes

getMetaData

Yes

Yes

Yes

setArray

No

No

No

setAsciiStream

Yes

Yes

Yes

setBigDecimal

Yes

Yes

Yes

setBinaryStream

Yes

Yes

Yes

setBlob

Yes

Yes

Yes

setBoolean

Yes

Yes

Yes

setByte

Yes

Yes

Yes

setBytes

Yes

Yes

Yes

setCharacterStream

Yes

Yes

Yes

setClob

Yes

Yes

Yes

setDate

Yes

Yes1

Yes

setDouble

Yes

Yes

Yes

setFloat

Yes

Yes

Yes

setInt

Yes

Yes

Yes

setLong

Yes

Yes

Yes

setNull

Yes2

Yes2

Yes2

setObject

Yes

Yes

Yes

setRef

No

No

No

setShort

Yes

Yes

Yes

setString

Yes3

Yes3

Yes3

setTime

Yes4

Yes4

Yes

setTimestamp

Yes5

Yes5

Yes

setUnicodeStream

Yes

Yes

Yes

setURL

Yes

No

Yes

Chapter

4.

JDBC

and

SQLJ

reference

125

||

|
|
|
|
|

|
|
|

|
|
|||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

30.

DB2

JDBC

support

for

PreparedStatement

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Notes:

1.

The

following

form

of

setDate

is

not

supported:

setDate(int

parameterIndex,

java.sql.Date

x,

java.util.Calendar

cal)

2.

The

following

form

of

setNull

is

not

supported:

setNull(int

parameterIndex,

int

jdbcType,

String

typeName)

3.

setString

is

not

supported

if

the

column

has

the

FOR

BIT

DATA

attribute

or

the

data

type

is

BLOB.

4.

The

following

form

of

setTime

is

not

supported:

setTime(int

parameterIndex,

java.sql.Time

x,

java.util.Calendar

cal)

5.

The

following

form

of

setTimestamp

is

not

supported:

setTimestamp(int

parameterIndex,

java.sql.Timestamp

x,

java.util.Calendar

cal)

Table

31.

DB2

JDBC

support

for

Ref

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

get

BaseTypeName

No

No

No

Table

32.

DB2

JDBC

support

for

ResultSet

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

absolute

Yes

No

Yes

afterLast

Yes

No

Yes

beforeFirst

Yes

No

Yes

cancelRowUpdates

Yes

No

No

clearWarnings

Yes

Yes

Yes

close

Yes

Yes

Yes

deleteRow

Yes

No

No

findColumn

Yes

Yes

Yes

first

Yes

No

Yes

getArray

No

No

No

getAsciiStream

Yes

Yes

Yes

getBigDecimal

Yes

Yes

Yes

getBinaryStream

Yes1

Yes1

Yes

getBlob

Yes

Yes

Yes

getBoolean

Yes

Yes

Yes

getByte

Yes

Yes

Yes

getBytes

Yes

Yes

Yes

getCharacterStream

Yes

Yes

Yes

getClob

Yes

Yes

Yes

126

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

||

|
|
|
|
|

|
|
|

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

32.

DB2

JDBC

support

for

ResultSet

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getConcurrency

Yes

Yes

Yes

getCursorName

Yes

Yes

Yes

getDate

Yes

Yes2

Yes

getDouble

Yes

Yes

Yes

getFetchDirection

Yes

Yes

Yes

getFetchSize

Yes

Yes

Yes

getFloat

Yes

Yes

Yes

getInt

Yes

Yes

Yes

getLong

Yes

Yes

Yes

getMetaData

Yes

Yes

Yes

getObject

Yes3

Yes3

Yes3

getRef

No

No

No

getRow

Yes

No

Yes

getShort

Yes

Yes

Yes

getStatement

Yes

Yes

Yes

getString

Yes

Yes

Yes

getTime

Yes

Yes4

Yes

getTimestamp

Yes

Yes5

Yes

getType

Yes

Yes

Yes

getUnicodeStream

Yes

Yes

Yes

getURL

Yes

No

Yes

getWarnings

Yes

Yes

Yes

insertRow

No

No

No

isAfterLast

Yes

No

Yes

isBeforeFirst

Yes

No

Yes

isFirst

Yes

No

Yes

isLast

Yes

No

Yes

last

Yes

No

Yes

moveToCurrentRow

Yes

No

No

moveToInsertRow

No

No

No

next

Yes

Yes

Yes

previous

Yes

No

Yes

refreshRow

Yes

No

No

relative

Yes

No

Yes

rowDeleted

Yes

No

No

rowInserted

No

No

No

rowUpdated

Yes

No

No

setFetchDirection

Yes

Yes6

Yes

Chapter

4.

JDBC

and

SQLJ

reference

127

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

32.

DB2

JDBC

support

for

ResultSet

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

setFetchSize

Yes

Yes

Yes

updateAsciiStream

Yes

No

No

updateBigDecimal

Yes

No

No

updateBinaryStream

Yes

No

No

updateBoolean

Yes

No

No

updateByte

Yes

No

No

updateBytes

Yes

No

No

updateCharacterStream

Yes

No

No

updateDate

Yes

No

No

updateDouble

Yes

No

No

updateFloat

Yes

No

No

updateInt

Yes

No

No

updateLong

Yes

No

No

updateNull

Yes

No

No

updateObject

Yes

No

No

updateRow

Yes

No

No

updateShort

Yes

No

No

updateString

Yes

No

No

updateTime

Yes

No

No

updateTimestamp

Yes

No

No

wasNull

Yes

Yes

Yes

Notes:

1.

getBinaryStream

is

not

supported

for

CLOB

columns.

2.

The

following

forms

of

getDate

are

not

supported:

getDate(int

columnIndex,

java.util.Calendar

cal)

getDate(String

columnName,

java.util.Calendar

cal)

3.

The

following

form

of

the

getObject

method

is

not

supported:

getObject(int

parameterIndex,

java.util.Map

map)

4.

The

following

forms

of

getTime

are

not

supported:

getTime(int

columnIndex,

java.util.Calendar

cal)

getTime(String

columnName,

java.util.Calendar

cal)

5.

The

following

forms

of

getTimestamp

are

not

supported:

getTimestamp(int

columnIndex,

java.util.Calendar

cal)

getTimestamp(String

columnName,

java.util.Calendar

cal)

6.

Supported

only

if

direction

is

ResultSet.FETCH_FORWARD.

Table

33.

DB2

JDBC

support

for

ResultSetMetaData

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getCatalogName

Yes

Yes

Yes

getColumnClassName

No

No

Yes

128

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|

|
|

|

|

|

|
|

|

|
|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

Table

33.

DB2

JDBC

support

for

ResultSetMetaData

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getColumnCount

Yes

Yes

Yes

getColumnDisplaySize

Yes

Yes

Yes

getColumnLabel

Yes

Yes

Yes

getColumnName

Yes

Yes

Yes

getColumnType

Yes

Yes

Yes

getColumnTypeName

Yes

Yes

Yes

getPrecision

Yes

Yes

Yes

getScale

Yes

Yes

Yes

getSchemaName

Yes

Yes

Yes

getTableName

Yes

Yes

Yes

isAutoIncrement

Yes

Yes

Yes

isCaseSensitive

Yes

Yes

Yes

isCurrency

Yes

Yes

Yes

isDefinitelyWritable

Yes

Yes

Yes

isNullable

Yes

Yes

Yes

isReadOnly

Yes

Yes

Yes

isSearchable

Yes

Yes

Yes

isSigned

Yes

Yes

Yes

isWritable

Yes

Yes

Yes

Table

34.

DB2

JDBC

support

for

SQLData

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getSQLTypeName

No

No

No

readSQL

No

No

No

writeSQL

No

No

No

Table

35.

DB2

JDBC

support

for

SQLException

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

java.lang.Exception

Yes

Yes

Yes

getSQLState

Yes

Yes

Yes

getErrorCode

Yes

Yes

Yes

getNextException

Yes

Yes

Yes

setNextException

Yes

Yes

Yes

Chapter

4.

JDBC

and

SQLJ

reference

129

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||

||||

||||

||||
|

Table

36.

DB2

JDBC

support

for

SQLInput

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

readArray

No

No

No

readAsciiStream

No

No

No

readBigDecimal

No

No

No

readBinaryStream

No

No

No

readBlob

No

No

No

readBoolean

No

No

No

readByte

No

No

No

readBytes

No

No

No

readCharacterStream

No

No

No

readClob

No

No

No

readDate

No

No

No

readDouble

No

No

No

readFloat

No

No

No

readInt

No

No

No

readLong

No

No

No

readObject

No

No

No

readRef

No

No

No

readShort

No

No

No

readString

No

No

No

readTime

No

No

No

readTimestamp

No

No

No

wasNull

No

No

No

Table

37.

DB2

JDBC

support

for

SQLOutput

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

writeArray

No

No

No

writeAsciiStream

No

No

No

writeBigDecimal

No

No

No

writeBinaryStream

No

No

No

writeBlob

No

No

No

writeBoolean

No

No

No

writeByte

No

No

No

writeBytes

No

No

No

writeCharacterStream

No

No

No

writeClob

No

No

No

writeDate

No

No

No

writeDouble

No

No

No

130

Application

Programming

Guide

and

Reference

for

Java™

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

37.

DB2

JDBC

support

for

SQLOutput

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

writeFloat

No

No

No

writeInt

No

No

No

writeLong

No

No

No

writeObject

No

No

No

writeRef

No

No

No

writeShort

No

No

No

writeString

No

No

No

writeStruct

No

No

No

writeTime

No

No

No

writeTimestamp

No

No

No

Table

38.

DB2

JDBC

support

for

Statement

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

addBatch

Yes

Yes

Yes

cancel

Yes1

No

Yes

clearBatch

Yes

Yes

Yes

clearWarnings

Yes

Yes

Yes

close

Yes

Yes

Yes

execute

Yes2

Yes

Yes

executeBatch

Yes

Yes

Yes

executeQuery

Yes

Yes

Yes

executeUpdate

Yes2

Yes

Yes

getConnection

Yes

No

Yes

getFetchDirection

Yes

No

Yes

getFetchSize

Yes

No

Yes

getGeneratedKeys

Yes

No

No

getMaxFieldSize

Yes

Yes

Yes

getMaxRows

Yes

Yes

Yes

getMoreResults

Yes3

Yes

Yes

getQueryTimeout

Yes1

Yes

Yes

getResultSet

Yes

Yes

Yes

getResultSetConcurrency

Yes

Yes

Yes

getResultSetType

Yes

Yes

Yes

getUpdateCount4

Yes

Yes

Yes

getWarnings

Yes

Yes

Yes

setCursorName

Yes

Yes

Yes

setEscapeProcessing

Yes

Yes

Yes

Chapter

4.

JDBC

and

SQLJ

reference

131

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table

38.

DB2

JDBC

support

for

Statement

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

setFetchDirection

Yes

Yes

Yes

setFetchSize

Yes

No

Yes

setMaxFieldSize

Yes

Yes

Yes

setMaxRows

Yes

Yes

Yes

setQueryTimeout

Yes5

Yes5

Yes

Notes:

1.

This

method

is

not

supported

for

Universal

Driver

type

2

connectivity

in

the

OS/390

or

z/OS

environment.

2.

In

addition

to

the

other

forms

of

execute

or

executeUpdate,

the

DB2

Universal

JDBC

Driver

supports

the

following

JDBC

3.0

forms:

executeUpdate(String

sql,

int

autoGeneratedKeys)

execute(String

sql,

int

autoGeneratedKeys)

3.

In

addition

to

getMoreResults(),

the

DB2

Universal

JDBC

Driver

supports

the

following

JDBC

3.0

forms:

v

getMoreResults(java.sql.Statement.CLOSE_CURRENT_RESULT)

v

getMoreResults(java.sql.Statement.KEEP_CURRENT_RESULT)

v

getMoreResults(java.sql.Statement.CLOSE_ALL_RESULTS)

4.

Not

supported

for

stored

procedure

ResultSets.

5.

Supported

only

for

a

seconds

value

of

0.

Table

39.

DB2

JDBC

support

for

Struct

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getSQLTypeName

No

No

No

getAttributes

No

No

No

Table

40.

DB2

JDBC

support

for

XAConnection

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

Methods

inherited

from

javax.sql.PooledConnection

Yes1

No

Yes

getXAResource

Yes1

No

Yes

Notes:

1.

This

method

is

supported

for

DB2

Universal

JDBC

Driver

type

2

connectivity

to

a

DB2

UDB

for

Linux,

UNIX

and

Windows

server

or

DB2

Universal

JDBC

Driver

type

4

connectivity

to

a

DB2

UDB

for

z/OS

server.

Table

41.

DB2

JDBC

support

for

XADataSource

methods

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

getLoginTimeout

Yes

No

Yes

getLogWriter

Yes

No

Yes

getXAConnection

Yes

No

Yes

setLoginTimeout

Yes

No

Yes

132

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

|

|

|
|

|
|

|
|
|
|

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||

|

|
|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

Table

41.

DB2

JDBC

support

for

XADataSource

methods

(continued)

JDBC

method

DB2

Universal

JDBC

Driver

support

JDBC/SQLJ

2.0

Driver

for

OS/390

support

DB2

JDBC

Type

2

Driver

for

Linux,

UNIX

and

Windows

support

setLogWriter

Yes

No

Yes

SQLJ

statement

reference

The

following

topics

contain

information

about

the

syntax

of

SQLJ

clauses:

v

“SQLJ

clause”

v

“SQLJ

host-expression”

v

“SQLJ

implements-clause”

on

page

134

v

“SQLJ

with-clause”

on

page

134

v

“SQLJ

connection-declaration-clause”

on

page

136

v

“SQLJ

iterator-declaration-clause”

on

page

137

v

“SQLJ

executable-clause”

on

page

138

v

“SQLJ

context-clause”

on

page

138

v

“SQLJ

statement-clause”

on

page

139

v

“SQLJ

SET-TRANSACTION-clause”

on

page

141

v

“SQLJ

assignment-clause”

on

page

141

v

“SQLJ

iterator-conversion-clause”

on

page

142

SQLJ

clause

The

SQL

statements

in

an

SQLJ

program

are

in

SQLJ

clauses.

The

general

syntax

of

an

SQLJ

clause

is:

��

#sql

connection-declaration-clause

iterator-declaration-clause

executable-clause

;

��

Keywords

in

an

SQLJ

clause

are

case

sensitive,

unless

those

keywords

are

part

of

an

SQL

statement

in

an

executable

clause.

SQLJ

host-expression

A

host

expression

is

a

Java

variable

or

expression

that

is

referenced

by

SQLJ

clauses

in

an

SQLJ

application

program.

Syntax:

��

:

simple-variable

IN

(complex-expression)

OUT

INOUT

��

Description:

:

Indicates

that

the

variable

or

expression

that

follows

is

a

host

expression.

The

colon

must

immediately

precede

the

variable

or

expression.

Chapter

4.

JDBC

and

SQLJ

reference

133

|

|
|
|
|
|

|
|
|

||||
|

|

IN|OUT|INOUT

For

a

host

expression

that

is

used

as

a

parameter

in

a

stored

procedure

call,

identifies

whether

the

parameter

provides

data

to

the

stored

procedure

(IN),

retrieves

data

from

the

stored

procedure

(OUT),

or

does

both

(INOUT).

The

default

is

IN.

simple-variable

Specifies

a

Java

unqualified

identifier.

complex-expression

Specifies

a

Java

expression

that

results

in

a

single

value.

Usage

notes:

v

A

complex

expression

must

be

enclosed

in

parentheses.

v

ANSI/ISO

rules

govern

where

a

host

expression

can

appear

in

a

static

SQL

statement.

SQLJ

implements-clause

The

implements

clause

derives

one

or

more

classes

from

a

Java

interface.

Syntax:

��

implements

�

,

interface-element

��

interface-element:

��

sqlj.runtime.ForUpdate

sqlj.runtime.Scrollable

user-specified-interface-class

��

Description:

interface-element

Specifies

a

user-defined

Java

interface,

the

SQLJ

interface

sqlj.runtime.ForUpdate

or

the

SQLJ

interface

sqlj.runtime.Scrollable.

You

need

to

implement

sqlj.runtime.ForUpdate

when

you

declare

an

iterator

for

a

positioned

UPDATE

or

positioned

DELETE

operation.

See

“Performing

positioned

UPDATE

and

DELETE

operations

in

an

SQLJ

application”

on

page

71

for

information

on

performing

a

positioned

UPDATE

or

positioned

DELETE

operation

in

SQLJ.

You

need

to

implement

sqlj.runtime.Scrollable

when

you

declare

a

scrollable

iterator.

See

“Using

scrollable

iterators

in

an

SQLJ

application”

on

page

96

for

information

on

scrollable

iterators.

SQLJ

with-clause

The

with

clause

specifies

a

set

of

one

or

more

attributes

for

an

iterator

or

a

connection

context.

134

Application

Programming

Guide

and

Reference

for

Java™

Syntax:

��

with

�

,

(

with-element

)

��

with-element:

��

�

holdability=true

holdability=false

sensitivity=INSENSITIVE

sensitivity=SENSITIVE

dynamic=false

,

dynamic=true

,

updateColumns=

"

column-name

"

Java-ID=Java-constant-expression

dataSource=

"

logical-datasource-name

"

��

Description:

holdability

For

an

iterator,

specifies

whether

an

iterator

keeps

its

position

in

a

table

after

a

COMMIT

is

executed.

The

value

for

holdability

must

be

true

or

false.

sensitivity

For

an

iterator,

specifies

whether

changes

that

are

made

to

the

underlying

table

can

be

visible

to

the

iterator

after

it

is

opened.

The

value

must

be

INSENSITIVE

or

SENSITIVE.

The

default

is

INSENSITIVE.

dynamic

For

an

iterator

that

is

defined

with

sensitivity=SENSITIVE,

specifies

whether

the

following

cases

are

true:

v

When

the

application

executes

positioned

UPDATE

and

DELETE

statements

with

the

iterator,

those

changes

are

visible

to

the

iterator.

v

When

the

application

executes

INSERT,

UPDATE,

and

DELETE

statements

within

the

application

but

outside

the

iterator,

those

changes

are

visible

to

the

iterator.

The

value

for

dynamic

must

be

true

or

false.

The

default

is

false.

If

the

value

of

dynamic

is

true,

the

data

source

must

support

dynamic

scrollable

cursors.

updateColumns

For

an

iterator,

specifies

the

columns

that

are

to

be

modified

when

the

iterator

is

used

for

a

positioned

UPDATE

statement.

The

value

for

updateColumns

must

be

a

literal

string

that

contains

the

column

names,

separated

by

commas.

column-name

For

an

iterator,

specifies

a

column

of

the

result

table

that

is

to

be

updated

using

the

iterator.

Chapter

4.

JDBC

and

SQLJ

reference

135

|
|
|

|
|

|
|
|

|

|
|

Java-ID

For

an

iterator

or

connection

context,

specifies

a

Java

variable

that

identifies

a

user-defined

attribute

of

the

iterator

or

connection

context.

The

value

of

Java-constant-expression

is

also

user-defined.

dataSource

For

a

connection

context,

specifies

the

logical

name

of

a

separately-created

DataSource

object

that

represents

the

data

source

to

which

the

application

will

connect.

This

option

is

available

only

for

the

DB2

Universal

JDBC

Driver.

Usage

notes:

v

The

value

on

the

left

side

of

a

with

element

must

be

unique

within

its

with

clause.

v

If

you

specify

updateColumns

in

a

with

element

of

an

iterator

declaration

clause,

the

iterator

declaration

clause

must

also

contain

an

implements

clause

that

specifies

the

sqlj.runtime.ForUpdate

interface.

v

If

you

do

not

customize

your

SQLJ

program,

the

JDBC

driver

ignores

the

value

of

holdability

that

is

in

the

with

clause.

Instead,

the

driver

uses

the

JDBC

driver

setting

for

holdability.

SQLJ

connection-declaration-clause

The

connection

declaration

clause

declares

a

connection

to

a

data

source

in

an

SQLJ

application

program.

Syntax:

��

Java-modifiers

context

Java-class-name

implements-clause

with-clause

��

Description:

Java-modifiers

Specifies

modifiers

that

are

valid

for

Java

class

declarations,

such

as

static,

public,

private,

or

protected.

Java-class-name

Specifies

a

valid

Java

identifier.

During

the

program

preparation

process,

SQLJ

generates

a

connection

context

class

whose

name

is

this

identifier.

implements-clause

See

“SQLJ

implements-clause”

on

page

134

for

a

description

of

this

clause.

In

a

connection

declaration

clause,

the

interface

class

to

which

the

implements

clause

refers

must

be

a

user-defined

interface

class.

with-clause

See

“SQLJ

with-clause”

on

page

134

for

a

description

of

this

clause.

Usage

notes:

v

SQLJ

generates

a

connection

class

declaration

for

each

connection

declaration

clause

you

specify.

SQLJ

data

source

connections

are

objects

of

those

generated

connection

classes.

v

You

can

specify

a

connection

declaration

clause

anywhere

that

a

Java

class

definition

can

appear

in

a

Java

program.

136

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

SQLJ

iterator-declaration-clause

An

iterator

declaration

clause

declares

a

positioned

iterator

class

or

a

named

iterator

class

in

an

SQLJ

application

program.

An

iterator

contains

the

result

table

from

a

query.

SQLJ

generates

an

iterator

class

for

each

iterator

declaration

clause

you

specify.

An

iterator

is

an

object

of

an

iterator

class.

An

iterator

declaration

clause

has

a

form

for

a

positioned

iterator

and

a

form

for

a

named

iterator.

The

two

kinds

of

iterators

are

distinct

and

incompatible

Java

types

that

are

implemented

with

different

interfaces.

Syntax:

��

Java-modifiers

iterator

Java-class-name

implements-clause

with-clause

�

�

(

positioned-iterator-column-declarations

)

named-iterator-column-declarations

��

positioned-iterator-column

declarations:

��

�

,

Java-data-type

��

named-iterator-column-declarations:

��

�

,

Java-data-type

Java-ID

��

Description:

Java-modifiers

Any

modifiers

that

are

valid

for

Java

class

declarations,

such

as

static,

public,

private,

or

protected.

Java-class-name

Any

valid

Java

identifier.

During

the

program

preparation

process,

SQLJ

generates

an

iterator

class

whose

name

is

this

identifier.

implements-clause

See

“SQLJ

implements-clause”

on

page

134

for

a

description

of

this

clause.

For

an

iterator

declaration

clause

that

declares

an

iterator

for

a

positioned

UPDATE

or

positioned

DELETE

operation,

the

implements

clause

must

specify

interface

sqlj.runtime.ForUpdate.

For

an

iterator

declaration

clause

that

declares

a

scrollable

iterator,

the

implements

clause

must

specify

interface

sqlj.runtime.Scrollable.

Chapter

4.

JDBC

and

SQLJ

reference

137

with-clause

See

“SQLJ

with-clause”

on

page

134

for

a

description

of

this

clause.

positioned-iterator-column-declarations

Specifies

a

list

of

Java

data

types,

which

are

the

data

types

of

the

columns

in

the

positioned

iterator.

The

data

types

in

the

list

must

be

separated

by

commas.

The

order

of

the

data

types

in

the

positioned

iterator

declaration

is

the

same

as

the

order

of

the

columns

in

the

result

table.

For

online

checking

during

serialized

profile

customization

to

succeed,

the

data

types

of

the

columns

in

the

iterator

must

be

compatible

with

the

data

types

of

the

columns

in

the

result

table.

See

“Java,

JDBC,

and

SQL

data

types”

on

page

101

for

a

list

of

compatible

data

types.

named-iterator-column-declarations

Specifies

a

list

of

Java

data

types

and

Java

identifiers,

which

are

the

data

types

and

names

of

the

columns

in

the

named

iterator.

Pairs

of

data

types

and

names

must

be

separated

by

commas.

The

name

of

a

column

in

the

iterator

must

match,

except

for

case,

the

name

of

a

column

in

the

result

table.

For

online

checking

during

serialized

profile

customization

to

succeed,

the

data

types

of

the

columns

in

the

iterator

must

be

compatible

with

the

data

types

of

the

columns

in

the

result

table.

See

“Java,

JDBC,

and

SQL

data

types”

on

page

101

for

a

list

of

compatible

data

types.

Usage

notes:

v

An

iterator

declaration

clause

can

appear

anywhere

in

a

Java

program

that

a

Java

class

declaration

can

appear.

v

When

a

named

iterator

declaration

contains

more

than

one

pair

of

Java

data

types

and

Java

IDs,

all

Java

IDs

within

the

list

must

be

unique.

SQLJ

executable-clause

An

executable

clause

contains

an

SQL

statement

or

an

assignment

statement.

An

assignment

statement

assigns

the

result

of

an

SQL

operation

to

a

Java

variable.

This

topic

describes

the

general

form

of

an

executable

clause.

Syntax:

��

context-clause

statement-clause

assignment-clause

��

Usage

notes:

v

An

executable

clause

can

appear

anywhere

in

a

Java

program

that

a

Java

statement

can

appear.

v

SQLJ

reports

negative

SQL

codes

from

executable

clauses

through

class

java.sql.SQLException.

If

SQLJ

raises

a

run-time

exception

during

the

execution

of

an

executable

clause,

the

value

of

any

host

expression

of

type

OUT

or

INOUT

is

undefined.

SQLJ

context-clause

A

context

clause

specifies

a

connection

context,

an

execution

context,

or

both.

You

use

a

connection

context

to

connect

to

a

data

source.

You

use

an

execution

context

to

monitor

and

modify

SQL

statement

execution.

138

Application

Programming

Guide

and

Reference

for

Java™

Syntax:

��

[

connection-context

]

execution-context

connection-context

,

execution

context

��

Description:

connection-context

Specifies

a

valid

Java

identifier

that

is

declared

earlier

in

the

SQLJ

program.

That

identifier

must

be

declared

as

an

instance

of

the

connection

context

class

that

SQLJ

generates

for

a

connection

declaration

clause.

execution-context

Specifies

a

valid

Java

identifier

that

is

declared

earlier

in

the

SQLJ

program.

That

identifier

must

be

declared

as

an

instance

of

class

sqlj.runtime.ExecutionContext.

Usage

notes:

v

If

you

do

not

specify

a

connection

context

in

an

executable

clause,

SQLJ

uses

the

default

connection

context.

v

If

you

do

not

specify

an

execution

context,

SQLJ

obtains

the

execution

context

from

the

connection

context

of

the

statement.

SQLJ

statement-clause

A

statement

clause

contains

an

SQL

statement

or

a

SET

TRANSACTION

clause.

Syntax:

��

{

SQL-statement

}

SET-TRANSACTION-clause

��

Description:

SQL-statement

You

can

include

the

DB2

UDB

for

z/OS

SQL

statements

in

Table

42

in

a

statement

clause.

For

information

on

individual

SQL

statements,

see

Chapter

5

of

DB2

SQL

Reference.

SET-TRANSACTION-clause

Sets

the

isolation

level

for

SQL

statements

in

the

program

and

the

access

mode

for

the

connection.

The

SET

TRANSACTION

clause

is

equivalent

to

the

SET

TRANSACTION

statement,

which

is

described

in

the

ANSI/ISO

SQL

standard

of

1992

and

is

supported

in

some

implementations

of

SQL.

See

“SQLJ

SET-TRANSACTION-clause”

on

page

141

for

more

information.

Table

42.

Valid

SQL

statements

in

an

SQLJ

statement

clause

ALTER

DATABASE

ALTER

FUNCTION

ALTER

INDEX

ALTER

PROCEDURE

Chapter

4.

JDBC

and

SQLJ

reference

139

Table

42.

Valid

SQL

statements

in

an

SQLJ

statement

clause

(continued)

ALTER

STOGROUP

ALTER

TABLE

ALTER

TABLESPACE

CALL

COMMENT

ON

COMMIT

CREATE

ALIAS

CREATE

DATABASE

CREATE

DISTINCT

TYPE

CREATE

FUNCTION

CREATE

GLOBAL

TEMPORARY

TABLE

CREATE

INDEX

CREATE

PROCEDURE

CREATE

STOGROUP

CREATE

SYNONYM

CREATE

TABLE

CREATE

TABLESPACE

CREATE

TRIGGER

CREATE

VIEW

DECLARE

GLOBAL

TEMPORARY

TABLE

DELETE

DROP

ALIAS

DROP

DATABASE

DROP

DISTINCT

TYPE

DROP

FUNCTION

DROP

INDEX

DROP

PACKAGE

DROP

PROCEDURE

DROP

STOGROUP

DROP

SYNONYM

DROP

TABLE

DROP

TABLESPACE

DROP

TRIGGER

DROP

VIEW

FETCH

GRANT

INSERT

LOCK

TABLE

RENAME

(JDBC/SQLJ

driver

for

z/OS

only)

REVOKE

ROLLBACK

SAVEPOINT

SELECT

INTO

SET

CURRENT

APPLICATION

ENCODING

SCHEME

SET

CURRENT

DEGREE

SET

CURRENT

LOCALE

LC_CTYPE

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

SET

CURRENT

OPTIMIZATION

HINT

SET

CURRENT

PACKAGE

PATH

SET

CURRENT

PACKAGESET

(USER

is

not

supported)

SET

CURRENT

PRECISION

SET

CURRENT

REFRESH

AGE

SET

CURRENT

RULES

SET

CURRENT

SQLID

SET

PATH

140

Application

Programming

Guide

and

Reference

for

Java™

|

Table

42.

Valid

SQL

statements

in

an

SQLJ

statement

clause

(continued)

SIGNAL

SQLSTATE

(JDBC/SQLJ

driver

for

z/OS

only)

UPDATE

Usage

notes:

v

SQLJ

supports

both

positioned

and

searched

DELETE

and

UPDATE

operations.

v

For

a

FETCH

statement,

a

positioned

DELETE

statement,

or

a

positioned

UPDATE

statement,

you

must

use

an

iterator

to

refer

to

rows

in

a

result

table.

SQLJ

SET-TRANSACTION-clause

The

SET

TRANSACTION

clause

sets

the

isolation

level

for

the

current

unit

of

work.

Syntax:

��

SET

TRANSACTION

ISOLATION

LEVEL

READ

COMMITTED

READ

UNCOMMITTED

REPEATABLE

READ

SERIALIZABLE

��

Description:

ISOLATION

LEVEL

Specifies

one

of

the

following

isolation

levels:

READ

COMMITTED

Specifies

that

the

current

DB2

isolation

level

is

cursor

stability.

READ

UNCOMMITTED

Specifies

that

the

current

DB2

isolation

level

is

uncommitted

read.

REPEATABLE

READ

Specifies

that

the

current

DB2

isolation

level

is

read

stability.

SERIALIZABLE

Specifies

that

the

current

DB2

isolation

level

is

repeatable

read.

Usage

notes:

You

can

execute

SET

TRANSACTION

only

at

the

beginning

of

a

transaction.

SQLJ

assignment-clause

The

assignment

clause

assigns

the

result

of

an

SQL

operation

to

a

Java

variable.

Syntax:

Chapter

4.

JDBC

and

SQLJ

reference

141

��

Java-ID

=

{

fullselect

}

order-by-clause

optimize-for-clause

isolation-clause

queryno-clause

fetch-first-clause

iterator-conversion-clause

��

Description:

Java-ID

Identifies

an

iterator

that

was

declared

previously

as

an

instance

of

an

iterator

class.

fullselect

Generates

a

result

table.

iterator-conversion-clause

See

“SQLJ

iterator-conversion-clause”

for

a

description

of

this

clause.

Usage

notes:

v

If

the

object

that

is

identified

by

Java-ID

is

a

positioned

iterator,

the

number

of

columns

in

the

result

set

must

match

the

number

of

columns

in

the

iterator.

In

addition,

the

data

type

of

each

column

in

the

result

set

must

be

compatible

with

the

data

type

of

the

corresponding

column

in

the

iterator.

See

“Java,

JDBC,

and

SQL

data

types”

on

page

101

for

a

list

of

compatible

Java

and

SQL

data

types.

v

If

the

object

that

is

identified

by

Java-ID

is

a

named

iterator,

the

name

of

each

accessor

method

must

match,

except

for

case,

the

name

of

a

column

in

the

result

set,

except

for

case.

In

addition,

the

data

type

of

the

object

that

an

accessor

method

returns

must

be

compatible

with

the

data

type

of

the

corresponding

column

in

the

result

set.

v

You

can

put

an

assignment

clause

anywhere

in

a

Java

program

that

a

Java

assignment

statement

can

appear.

However,

you

cannot

put

an

assignment

clause

where

a

Java

assignment

expression

can

appear.

For

example,

you

cannot

specify

an

assignment

clause

in

the

control

list

of

a

for

statement.

SQLJ

iterator-conversion-clause

The

iterator

conversion

clause

converts

a

JDBC

ResultSet

to

an

iterator.

Syntax:

��

CAST

host-expression

��

Description:

host-expression

Identifies

the

JDBC

ResultSet

that

is

to

be

converted

to

an

SQLJ

iterator.

Usage

notes:

v

If

the

iterator

to

which

the

JDBC

ResultSet

is

to

be

converted

is

a

positioned

iterator,

the

number

of

columns

in

the

ResultSet

must

match

the

number

of

columns

in

the

iterator.

In

addition,

the

data

type

of

each

column

in

the

ResultSet

must

be

compatible

with

the

data

type

of

the

corresponding

column

in

the

iterator.

142

Application

Programming

Guide

and

Reference

for

Java™

v

If

the

iterator

is

a

named

iterator,

the

name

of

each

accessor

method

must

match,

except

for

case,

the

name

of

a

column

in

the

ResultSet.

In

addition,

the

data

type

of

the

object

that

an

accessor

method

returns

must

be

compatible

with

the

data

type

of

the

corresponding

column

in

the

ResultSet.

v

When

an

iterator

that

is

generated

through

the

iterator

conversion

clause

is

closed,

the

ResultSet

from

which

the

iterator

is

generated

is

also

closed.

Selected

sqlj.runtime

classes

and

interfaces

The

sqlj.runtime

package

defines

the

run-time

classes

and

interfaces

that

SQLJ

uses.

This

topic

describes:

v

Each

class

of

sqlj.runtime

that

contains

methods

that

you

can

invoke

in

your

SQLJ

application

programs

v

Each

of

the

interfaces

that

you

might

need

to

implement

in

your

SQLJ

application

programs

sqlj.runtime.ExecutionContext

class:

The

sqlj.runtime.ExecutionContext

class

is

defined

for

execution

contexts.

You

can

use

an

execution

context

to

control

the

execution

of

SQL

statements.

After

you

declare

an

execution

context

and

create

an

instance

of

that

execution

context,

you

can

use

the

following

methods.

executeBatch

Format:

public

synchronized

int[]

executeBatch()

Executes

the

pending

statement

batch

and

returns

an

array

of

update

counts.

If

no

pending

statement

batch

exists,

null

is

returned.

When

this

method

is

called,

the

statement

batch

is

cleared,

even

if

the

call

results

in

an

exception.

getBatchLimit

Format:

synchronized

public

int

getBatchLimit()

Returns

the

current

batch

limit,

which

is

the

number

of

statements

that

are

added

to

a

batch

before

the

batch

is

implicitly

executed.

getBatchUpdateCounts

Format:

public

synchronized

int[]

getBatchUpdateCounts()

Returns

an

array

that

contains

the

number

of

rows

updated

by

each

statement

that

successfully

executed

in

a

batch.

Returns

null

if

no

statements

in

the

batch

completed

successfully.

getMaxFieldSize

Format:

public

int

getMaxFieldSize()

Returns

the

maximum

number

of

bytes

that

are

returned

for

any

character

or

binary

column

in

queries

that

use

the

given

execution

context.

A

value

of

0

means

that

the

maximum

number

of

bytes

is

unlimited.

getMaxRows

Format:

public

int

getMaxRows()

Chapter

4.

JDBC

and

SQLJ

reference

143

Returns

the

maximum

number

of

rows

that

are

returned

for

any

query

that

uses

the

given

execution

context.

A

value

of

0

means

that

the

maximum

number

of

rows

is

unlimited.

getNextResultSet

Formats:

public

ResultSet

getNextResultSet()

public

ResultSet

getNextResultSet(int

current)

After

a

stored

procedure

call,

returns

a

result

set

from

the

stored

procedure.

A

value

of

null

means

that

there

are

no

more

result

sets

to

be

returned.

When

you

invoke

getNextResultSet(),

SQLJ

closes

the

currently-open

result

set

and

advances

to

the

next

result

set.

When

you

invoke

getNextResultSet(int

current),

the

value

of

current

indicates

what

SQLJ

does

with

the

currently-open

result

set

before

it

advances

to

the

next

result

set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies

that

the

current

ResultSet

object

is

closed

when

the

next

ResultSet

object

is

returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies

that

the

current

ResultSet

object

stays

open

when

the

next

ResultSet

object

is

returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies

that

all

open

ResultSet

objects

are

closed

when

the

next

ResultSet

object

is

returned.

getNextResultSet(int

current)

requires

JDK

1.4

or

later.

getUpdateCount

Format:

public

abstract

int

getUpdateCount()

throws

SQLException

Returns:

ExecutionContext.ADD_BATCH_COUNT

If

the

statement

was

added

to

an

existing

batch.

ExecutionContext.NEW_BATCH_COUNT

If

the

statement

was

the

first

statement

in

a

new

batch.

ExecutionContext.EXEC_BATCH_COUNT

If

the

statement

was

part

of

a

batch,

and

the

batch

was

executed.

Other

integer

If

the

statement

was

executed

rather

than

added

to

a

batch.

This

value

is

the

number

of

rows

that

were

updated

by

the

statement.

getWarnings

Format:

public

SQLWarning

getWarnings()

Returns

the

first

warning

that

was

reported

by

the

last

SQL

operation

that

was

executed

using

this

context.

Subsequent

warnings

are

chained

to

the

first

warning.

Use

this

method

to

retrieve

positive

SQLCODEs.

144

Application

Programming

Guide

and

Reference

for

Java™

isBatching

Format:

public

synchronized

boolean

isBatching()

Returns

true

if

batching

is

enabled.

Returns

false

if

batching

is

disabled.

setBatching

Format:

public

synchronized

void

setBatching(boolean)

Enables

or

disables

batching.

setBatchLimit

Format:

public

synchronized

void

setBatchLimit(int)

Sets

the

maximum

number

of

statements

that

are

added

to

a

batch

before

the

batch

is

implicitly

executed.

Possible

values

for

the

input

parameter

are:

ExecutionContext.UNLIMITED_BATCH

Indicates

that

implicit

execution

occurs

only

when

SQLJ

encounters

a

statement

that

is

batchable

but

incompatible,

or

not

batchable.

Setting

this

value

is

the

same

as

not

invoking

setBatchLimit.

ExecutionContext.AUTO_BATCH

Indicates

that

implicit

execution

occurs

when

the

number

of

statements

in

the

batch

reaches

a

number

that

is

set

by

SQLJ.

Positive

integer

The

number

of

statements

that

are

added

to

the

batch

before

SQLJ

executes

the

batch

implicitly.

The

batch

might

be

executed

before

this

many

statements

have

been

added

if

SQLJ

encounters

a

statement

that

is

batchable

but

incompatible,

or

not

batchable.

setMaxFieldSize

Format:

public

void

setMaxFieldSize(int

max)

Specifies

the

maximum

number

of

bytes

that

are

returned

for

any

character

or

binary

column

in

queries

that

use

the

given

execution

context.

The

default

is

0,

which

means

that

the

maximum

number

of

bytes

is

unlimited.

setMaxRows

Format:

public

void

setMaxRows(int

max)

Specifies

the

maximum

number

of

rows

that

are

returned

for

any

query

that

uses

the

given

execution

context.

The

default

is

0,

which

means

that

the

maximum

number

of

rows

returned

is

unlimited.

sqlj.runtime.ConnectionContext

interface:

sqlj.runtime.ConnectionContext

is

an

interface

that

SQLJ

implements

when

you

execute

a

connection

declaration

clause

and

thereby

create

a

connection

context

class.

Suppose

that

you

declare

a

connection

named

Ctx.

You

can

then

use

the

following

methods

to

determine

or

change

the

default

context.

Chapter

4.

JDBC

and

SQLJ

reference

145

getDefaultContext

Format:

public

static

Ctx

getDefaultContext()

Returns

the

default

connection

context

object

for

the

Ctx

class.

SetDefaultContext

Format:

public

static

void

Ctx

setDefaultContext(Ctx

default-context)

Sets

the

default

connection

context

object

for

the

Ctx

class.

sqlj.runtime.ForUpdate

interface:

Implement

the

sqlj.runtime.ForUpdate

interface

for

positioned

UPDATE

or

DELETE

operations.

You

implement

sqlj.runtime.ForUpdate

in

an

SQLJ

iterator

declaration

clause.

sqlj.runtime.NamedIterator

interface:

sqlj.runtime.NamedIterator

is

an

interface

that

SQLJ

implements

when

you

declare

a

named

iterator.

When

you

declare

an

instance

of

a

named

iterator,

SQLJ

creates

an

accessor

method

for

each

column

in

the

expected

result

table.

An

accessor

method

returns

the

data

from

its

column

of

the

result

table.

The

name

of

an

accessor

method

matches

the

name

of

the

corresponding

column

in

the

named

iterator.

In

addition

to

the

accessor

methods,

SQLJ

generates

the

following

methods

that

you

can

invoke

in

your

SQLJ

application.

close

Format:

public

abstract

void

close()

throws

SQLException

Releases

database

resources

that

the

iterator

uses.

isClosed

Format:

public

abstract

boolean

isClosed()

throws

SQLException

Returns

a

value

of

true

if

the

close

method

has

been

invoked.

next

Format:

public

abstract

boolean

next()

throws

SQLException

Advances

the

iterator

to

the

next

row.

Before

an

instance

of

the

next

method

is

invoked

for

the

first

time,

the

iterator

is

positioned

before

the

first

row

of

the

result

table.

next

returns

a

value

of

true

when

a

next

row

is

available

and

false

when

all

rows

have

been

retrieved.

sqlj.runtime.PositionedIterator

interface:

sqlj.runtime.PositionedIterator

is

an

interface

that

SQLJ

implements

when

you

declare

a

positioned

iterator.

After

you

declare

and

create

an

instance

of

a

positioned

iterator,

you

can

use

the

following

method.

146

Application

Programming

Guide

and

Reference

for

Java™

endFetch

Format:

public

abstract

boolean

endFetch()

throws

SQLException

Returns

a

value

of

true

if

the

iterator

is

not

positioned

on

a

row.

sqlj.runtime.ResultSetIterator

interface:

sqlj.runtime.ResultSetIterator

is

an

interface

that

SQLJ

implements

when

you

declare

an

iterator.

After

you

declare

and

create

an

instance

of

an

iterator,

you

can

use

the

following

methods.

clearWarnings

Format:

public

abstract

void

clearWarnings()

throws

SQLException

Returns

null

until

a

new

warning

is

reported

for

this

iterator.

close

Format:

public

abstract

void

close()

throws

SQLException

Releases

database

resources

that

the

iterator

uses.

getResultSet

Format:

public

abstract

ResultSet

getResultSet()

throws

SQLException

Returns

a

JDBC

result

set

representation

of

an

SQLJ

iterator.

getWarnings

Format:

public

abstract

SQLWarning

getWarnings()

throws

SQLException

Returns

the

first

warning

that

is

reported

by

calls

on

this

iterator.

Subsequent

iterator

warnings

are

be

chained

to

this

SQLWarning.

The

warning

chain

is

automatically

cleared

each

time

a

new

row

is

read.

isClosed

Format:

public

abstract

boolean

isClosed()

throws

SQLException

Returns

a

value

of

true

if

the

close

method

has

been

invoked.

next

Format:

public

abstract

boolean

next()

throws

SQLException

Advances

the

iterator

to

the

next

row.

Before

an

instance

of

the

next

method

is

invoked

for

the

first

time,

the

iterator

is

positioned

before

the

first

row

of

the

result

table.

next

returns

a

value

of

true

when

a

next

row

is

available

and

false

when

all

rows

have

been

retrieved.

sqlj.runtime.Scrollable

interface:

sqlj.runtime.Scrollable

is

an

interface

that

you

implement

when

you

declare

a

scrollable

iterator.

You

use

the

sqlj.runtime.Scrollable

methods

to

move

around

in

the

result

table

and

to

check

your

position

in

the

result

table.

Chapter

4.

JDBC

and

SQLJ

reference

147

absolute(int)

Format:

public

abstract

boolean

absolute

(int

n)

throws

SQLException

Moves

the

iterator

to

a

specified

row.

If

n>0,

positions

the

iterator

on

row

n

of

the

result

table.

If

n<0,

and

m

is

the

number

of

rows

in

the

result

table,

positions

the

iterator

on

row

m+n+1

of

the

result

table.

If

the

absolute

value

of

n

is

greater

than

the

number

of

rows

in

the

result

table,

positions

the

cursor

after

the

last

row

if

n

is

negative,

or

before

the

first

row

if

n

is

positive.

Absolute(1)

is

the

same

as

first().

Absolute(-1)

is

the

same

as

last().

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

afterLast()

Format:

public

abstract

void

afterLast()

throws

SQLException

Moves

the

iterator

after

the

last

row

of

the

result

table.

beforeFirst()

Format:

public

abstract

void

beforeFirst()

throws

SQLException

Moves

the

iterator

before

the

first

row

of

the

result

table.

first()

Format:

public

abstract

boolean

first()

throws

SQLException

Moves

the

iterator

to

the

first

row

of

the

result

table.

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

getFetchDirection()

Format:

public

abstract

int

getFetchDirection

(

)

throws

SQLException

Returns

the

fetch

direction

of

the

iterator.

Possible

values

are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows

are

processed

in

a

forward

direction,

from

first

to

last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows

are

processed

in

a

backward

direction,

from

last

to

first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The

order

of

processing

is

not

known.

isAfterLast()

Format:

public

abstract

boolean

isAfterLast()

throws

SQLException

Returns

true

if

the

iterator

is

positioned

after

the

last

row

of

the

result

table.

Otherwise,

returns

false.

148

Application

Programming

Guide

and

Reference

for

Java™

isBeforeFirst()

Format:

public

abstract

boolean

isBeforeFirst()

throws

SQLException

Returns

true

if

the

iterator

is

positioned

before

the

first

row

of

the

result

table.

Otherwise,

returns

false.

isFirst()

Format:

public

abstract

boolean

isFirst()

throws

SQLException

Returns

true

if

the

iterator

is

positioned

on

the

first

row

of

the

result

table.

Otherwise,

returns

false.

isLast()

Format:

public

abstract

boolean

isLast()

throws

SQLException

Returns

true

if

the

iterator

is

positioned

on

the

last

row

of

the

result

table.

Otherwise,

returns

false.

last()

Format:

public

abstract

boolean

last()

throws

SQLException

Moves

the

iterator

to

the

last

row

of

the

result

table.

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

previous()

Format:

public

abstract

boolean

previous()

throws

SQLException

Moves

the

iterator

to

the

previous

row

of

the

result

table.

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

relative(int)

Format:

public

abstract

boolean

relative(int

n)

throws

SQLException

If

n>0,

positions

the

iterator

on

the

row

that

is

n

rows

after

the

current

row.

If

n<0,

positions

the

iterator

on

the

row

that

is

n

rows

before

the

current

row.

If

n=0,

positions

the

iterator

on

the

current

row.

The

cursor

must

be

on

a

valid

row

of

the

result

table

before

you

can

use

this

method.

If

the

cursor

is

before

the

first

row

or

after

the

last

throw,

the

method

throws

an

SQLException.

Suppose

that

m

is

the

number

of

rows

in

the

result

table

and

x

is

the

current

row

number

in

the

result

table.

If

n>0

and

x+n>m,

the

the

iterator

is

positioned

after

the

last

row.

If

n<0

and

x+n<1,

the

iterator

is

positioned

before

the

first

row.

Returns

true

if

the

iterator

is

on

a

row.

Otherwise,

returns

false.

setFetchDirection(int)

Format:

Chapter

4.

JDBC

and

SQLJ

reference

149

public

abstract

void

setFetchDirection

(int)

throws

SQLException

Gives

the

SQLJ

runtime

environment

a

hint

as

to

the

direction

in

which

rows

of

this

iterator

object

are

processed.

Possible

values

are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows

are

processed

in

a

forward

direction,

from

first

to

last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows

are

processed

in

a

backward

direction,

from

last

to

first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The

order

of

processing

is

not

known.

DB2

Universal

JDBC

Driver

reference

information

The

following

topics

contain

information

that

is

specific

to

the

DB2

Universal

JDBC

Driver:

v

“Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC”

v

“JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

161

v

“SQLJ

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers”

on

page

164

v

“Error

codes

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

165

v

“SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

165

Summary

of

DB2

Universal

JDBC

Driver

extensions

to

JDBC

This

topic

describes

the

JDBC

APIs

that

are

specific

to

the

DB2

Universal

JDBC

Driver.

To

use

any

of

the

methods

that

are

described

in

this

topic,

you

must

cast

an

instance

of

the

related,

standard

JDBC

class

to

an

instance

of

the

DB2-only

class.

For

example:

javax.sql.DataSource

ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setServerName("sysmvs1.stl.ibm.com");

DB2BaseDataSource

class:

The

com.ibm.db2.jcc.DB2BaseDataSource

class

is

the

abstract

data

source

parent

class

for

all

DB2-specific

implementations

of

javax.sql.DataSource,

javax.sql.ConnectionPoolDataSource,

and

javax.sql.XADataSource.

DB2BaseDataSource

properties:

The

following

properties

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

explanations

of

these

properties.

Each

of

these

properties

has

a

setXXX

method

to

set

the

value

of

the

property

and

a

getXXX

method

to

retrieve

the

value.

A

setXXX

method

has

this

form:

void

setProperty-name(data-type

property-value)

A

getXXX

method

has

this

form:

data-type

getProperty-name()

Property-name

is

the

unqualified

property

name,

with

the

first

character

capitalized.

150

Application

Programming

Guide

and

Reference

for

Java™

Table

43

lists

the

DB2

Universal

JDBC

Driver

properties

and

their

data

types.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

definitions

of

these

properties.

Table

43.

DB2

Universal

JDBC

Driver

properties

and

their

data

types

Property

name

Data

type

com.ibm.db2.jcc.DB2BaseDataSource.activeServerListJNDIName

String

com.ibm.db2.jcc.DB2BaseDataSource.clientAccountingInformation

String

com.ibm.db2.jcc.DB2BaseDataSource.clientApplicationInformation

String

com.ibm.db2.jcc.DB2BaseDataSource.clientUser

String

com.ibm.db2.jcc.DB2BaseDataSource.clientWorkstation

String

com.ibm.db2.jcc.DB2BaseDataSource.cliSchema

String

com.ibm.db2.jcc.DB2BaseDataSource.currentFunctionPath

String

com.ibm.db2.jcc.DB2BaseDataSource.currentPackagePath

String

com.ibm.db2.jcc.DB2BaseDataSource.cursorSensitivity

int

com.ibm.db2.jcc.DB2BaseDataSource.currentSchema

String

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID

String

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID

String

com.ibm.db2.jcc.DB2BaseDataSource.databaseName

String

com.ibm.db2.jcc.DB2BaseDataSource.deferPrepares

boolean

com.ibm.db2.jcc.DB2BaseDataSource.description

String

com.ibm.db2.jcc.DB2BaseDataSource.driverType

int

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeLobData

boolean

com.ibm.db2.jcc.DB2BaseDataSource.gssCredential

Object

com.ibm.db2.jcc.DB2BaseDataSource.jdbcCollection

String

com.ibm.db2.jcc.DB2BaseDataSource.keepDynamic

int

com.ibm.db2.jcc.DB2BaseDataSource.kerberosServerPrincipal

String

com.ibm.db2.jcc.DB2BaseDataSource.logWriter

PrintWriter

com.ibm.db2.jcc.DB2BaseDataSource.portNumber

int

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldability

int

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism

int

com.ibm.db2.jcc.DB2BaseDataSource.serverName

String

com.ibm.db2.jcc.DB2BaseDataSource.readOnly

boolean

com.ibm.db2.jcc.DB2BaseDataSource.traceFile

String

com.ibm.db2.jcc.DB2BaseDataSource.traceLevel

int

com.ibm.db2.jcc.DB2BaseDataSource.user

String

DB2BaseDataSource

methods:

In

addition

to

the

getXXX

and

setXXX

methods

for

the

DB2BaseDataSource

properties,

the

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

getReference

Format:

Chapter

4.

JDBC

and

SQLJ

reference

151

||

||

||

||

public

javax.naming.Reference

getReference()

throws

javax.naming.NamingException

Retrieves

the

Reference

of

a

DataSource

object.

For

an

explanation

of

a

Reference,

see

the

description

of

javax.naming.Referenceable

in

the

JNDI

documentation

at:

http://java.sun.com/products/jndi/docs.html

DB2Connection

interface:

The

com.ibm.db2.jcc.DB2Connection

interface

extends

the

java.sql.Connection

interface.

DB2Connection

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

getDB2ClientAccountingInformation

Format:

public

String

getDB2ClientAccountingInformation()

throws

SQLException

Returns

accounting

information

for

the

current

client.

getDB2ClientApplicationInformation

Format:

public

String

getDB2ClientApplicationInformation()

throws

SQLException

Returns

application

information

for

the

current

client.

getDB2ClientUser

Format:

public

String

getDB2ClientUser()

throws

SQLException

Returns

the

current

client

user

name

for

the

connection.

This

name

is

not

the

user

value

for

the

JDBC

connection.

getDB2ClientWorkstation

Format:

public

String

getDB2ClientWorkstation()

throws

SQLException

Returns

current

client

workstation

name

for

the

current

client.

getDB2CurrentPackagePath

Format:

public

String

getDB2CurrentPackagePath()

throws

SQLException

Returns

the

list

of

DB2

package

collections

that

are

searched

for

the

DB2

Universal

JDBC

Driver

packages.

getDB2CurrentPackageSet

Format:

public

String

getDB2CurrentPackageSet()

throws

SQLException

152

Application

Programming

Guide

and

Reference

for

Java™

Returns

the

collection

ID

for

the

connection.

getDB2SystemMonitor

Format:

public

abstract

DB2SystemMonitor

getDB2SystemMonitor()

throws

SQLException

Returns

the

system

monitor

object

for

the

connection.

Each

DB2

Universal

JDBC

Driver

connection

can

have

a

single

system

monitor.

See

“DB2SystemMonitor

interface”

on

page

158

for

more

information.

getJccLogWriter

Format:

public

PrintWriter

getJccLogWriter()

throws

SQLException

Returns

the

current

trace

destination

for

the

DB2

Universal

JDBC

Driver

trace.

setDB2ClientAccountingInformation

Format:

public

void

setDB2ClientAccountingInformation(String

info)

throws

SQLException

Specifies

accounting

information

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

setDB2ClientAccountingInformation

sets

the

value

in

the

CLIENT

ACCTNG

special

register.

Parameter

description:

info

User-specified

accounting

information.

The

maximum

length

depends

on

the

server.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

22

bytes.

A

Java

empty

string

("")

is

valid

for

this

parameter

value,

but

a

Java

null

value

is

not

valid.

setDB2ClientApplicationInformation

Format:

public

void

setDB2ClientApplicationInformation(String

info)

throws

SQLException

Specifies

application

information

for

the

connection.

This

information

is

for

client

accounting

purposes.

This

value

can

change

during

a

connection.

setDB2ClientApplicationInformation

sets

the

value

in

the

CLIENT

APPLNAME

special

register.

Parameter

description:

info

User-specified

application

information.

The

maximum

length

depends

on

the

server.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

32

bytes.

A

Java

empty

string

("")

is

valid

for

this

parameter

value,

but

a

Java

null

value

is

not

valid.

setDB2ClientUser

Format:

public

void

setDB2ClientUser(String

user)

throws

SQLException

Chapter

4.

JDBC

and

SQLJ

reference

153

|
|

|
|

|
|
|

Specifies

the

current

client

user

name

for

the

connection.

This

name

is

for

client

accounting

purposes,

and

is

not

the

user

value

for

the

JDBC

connection.

Unlike

the

user

for

the

JDBC

connection,

the

current

client

user

name

can

change

during

a

connection.

setDB2ClientUser

sets

the

value

in

the

CLIENT

USERID

special

register.

Parameter

description:

user

The

user

ID

for

the

current

client.The

maximum

length

depends

on

the

server.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

16

bytes.

A

Java

empty

string

("")

is

valid

for

this

parameter

value,

but

a

Java

null

value

is

not

valid.

setDB2ClientWorkstation

Format:

public

void

setDB2ClientWorkstation(String

name)

throws

SQLException

Specifies

the

current

client

workstation

name

for

the

connection.

This

name

is

for

client

accounting

purposes.

The

current

client

workstation

name

can

change

during

a

connection.

setDB2ClientWorkstation

sets

the

value

in

the

CLIENT

WRKSTNNAME

special

register.

Parameter

description:

name

The

workstation

name

for

the

current

client.The

maximum

length

depends

on

the

server.

For

a

DB2

UDB

for

OS/390

or

z/OS

server,

the

maximum

length

is

18

bytes.

A

Java

empty

string

("")

is

valid

for

this

parameter

value,

but

a

Java

null

value

is

not

valid.

setDB2CurrentPackagePath

Format:

public

void

setDB2CurrentPackagePath(String

packagePath)

throws

SQLException

Specifies

a

list

of

collection

IDs

that

DB2

searches

for

the

DB2

Universal

JDBC

Driver

DB2

packages.

Parameter

description:

packagePath

A

comma-separated

list

of

collection

IDs.

setDB2CurrentPackageSet

Format:

public

void

setDB2CurrentPackageSet(String

packageSet)

throws

SQLException

Specifies

the

collection

ID

for

the

connection.

When

you

set

this

value,

you

also

set

the

collection

ID

of

the

DB2

Universal

JDBC

Driver

instance

that

is

used

for

the

connection.

Parameter

description:

154

Application

Programming

Guide

and

Reference

for

Java™

packageSet

The

collection

ID

for

the

connection.

The

maximum

length

for

the

packageSet

value

is

18

bytes.

You

can

invoke

this

method

as

an

alternative

to

executing

the

SQL

SET

CURRENT

PACKAGESET

statement

in

your

program.

setJccLogWriter

Formats:

public

void

setJccLogWriter(PrintWriter

logWriter)

throws

SQLException

public

void

setJccLogWriter(PrintWriter

logWriter,

int

traceLevel)

throws

SQLException

Enables

or

disables

the

DB2

Universal

JDBC

Driver

trace,

or

changes

the

trace

destination

during

an

active

connection.

Parameter

descriptions:

logWriter

An

object

of

type

java.io.PrintWriter

to

which

the

DB2

Universal

JDBC

Driver

writes

trace

output.

To

turn

off

the

trace,

set

the

value

of

logWriter

to

null.

traceLevel

Specifies

the

types

of

traces

to

collect.

See

the

description

of

the

traceLevel

property

in

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

valid

values.

DB2DatabaseMetaData

interface:

The

com.ibm.db2.jcc.DB2DatabaseMetaData

interface

extends

the

java.sql.DatabaseMetaData

interface.

DB2DatabaseMetaData

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

DB2Diagnosable

interface:

The

com.ibm.db2.jcc.DB2Diagnosable

interface

provides

a

mechanism

for

getting

DB2

diagnostics

from

a

DB2

SQLException.

DB2Diagnosable

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

getSqlca

Format:

public

DB2Sqlca

getSqlca()

Returns

a

DB2Sqlca

object

from

a

java.sql.Exception

that

is

produced

under

a

DB2

Universal

JDBC

Driver.

getThrowable

Format:

public

Throwable

getThrowable()

Chapter

4.

JDBC

and

SQLJ

reference

155

Returns

a

java.lang.Throwable

object

from

a

java.sql.Exception

that

is

produced

under

a

DB2

Universal

JDBC

Driver.

printTrace

Format:

static

public

void

printTrace(java.io.PrintWriter

printWriter,

String

header)

Prints

diagnostic

information

after

a

java.sql.Exception

is

thrown

under

a

DB2

Universal

JDBC

Driver.

Parameter

descriptions:

printWriter

The

destination

for

the

diagnostic

information.

header

User-defined

information

that

is

printed

at

the

beginning

of

the

output.

DB2ExceptionFormatter

class:

The

com.ibm.db2.jcc.DB2ExceptionFormatter

class

contains

methods

for

printing

diagnostic

information

to

a

stream.

DB2ExceptionFormatter

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

printTrace

Formats:

static

public

void

printTrace(java.sql.SQLException

sqlException,

java.io.PrintWriter

printWriter,

String

header)

static

public

void

printTrace(DB2Sqlca

sqlca,

java.io.PrintWriter

printWriter,

String

header)

static

public

void

printTrace(java.lang.Throwable

throwable,

java.io.PrintWriter

printWriter,

String

header)

Prints

diagnostic

information

after

an

exception

is

thrown.

Parameter

descriptions:

sqlException|sqlca|throwable

The

exception

that

was

thrown

during

a

previous

JDBC

or

Java

operation.

printWriter

The

destination

for

the

diagnostic

information.

header

User-defined

information

that

is

printed

at

the

beginning

of

the

output.

DB2JccDataSource

interface:

The

com.ibm.db2.jcc.DB2JccDataSource

interface

can

be

used

to

distinguish

between

com.ibm.db2.jcc.DB2BaseDataSource

instances

for

the

DB2

Universal

JDBC

Driver

and

com.ibm.db2.jcc.DB2BaseDataSource

instances

for

the

JDBC/SQLJ

Driver

for

OS/390.

If

a

DataSource

instance

implements

com.ibm.db2.jcc.DB2JccDataSource,

it

is

a

DB2

Universal

JDBC

Driver

DataSource

instance.

Otherwise,

it

is

an

JDBC/SQLJ

Driver

for

OS/390

DataSource

instance.

156

Application

Programming

Guide

and

Reference

for

Java™

|

DB2RowID

interface:

The

com.ibm.db2.jcc.DB2RowID

class

is

used

for

declaring

Java

objects

for

use

with

the

DB2

ROWID

data

type.

DB2RowID

methods:

The

following

method

is

defined

only

for

the

DB2

Universal

JDBC

Driver.

getBytes

Format:

public

byte[]

getBytes()

Converts

a

com.ibm.jcc.DB2RowID

object

to

bytes.

DB2SimpleDataSource

class:

The

com.ibm.db2.jcc.DB2SimpleDataSource

class

extends

the

DataBaseDataSource

class.

A

DataBaseDataSource

object

does

not

support

connection

pooling

or

distributed

transactions.

It

contains

all

of

the

properties

and

methods

that

the

DB2BaseDataSource

class

contains.

In

addition,

DB2SimpleDataSource

contains

the

following

DB2

Universal

JDBC

Driver-only

properties.

DB2SimpleDataSource

properties:

The

following

property

is

defined

only

for

the

DB2

Universal

JDBC

Driver.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

an

explanation

of

this

property.

String

com.ibm.db2.jcc.DB2SimpleDataSource.password

DB2SimpleDataSource

methods:

The

following

method

is

defined

only

for

the

DB2

Universal

JDBC

Driver.

setPassword

Format:

public

void

setPassword(String

password)

Sets

the

password

for

the

DB2SimpleDataSource

object.

There

is

no

corresponding

getPassword

method.

Therefore,

the

password

cannot

be

encrypted

because

there

is

no

way

to

retrieve

the

password

so

that

you

can

decrypt

it.

DB2Sqlca

class:

The

com.ibm.db2.jcc.DB2Sqlca

class

is

an

encapsulation

of

the

DB2

SQLCA.

For

an

explanation

of

the

SQLCA

fields,

see

Appendix

C

of

DB2

SQL

Reference.

DB2Sqlca

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

getMessage

Format:

public

abstract

String

getMessage()

Returns

error

message

text.

Chapter

4.

JDBC

and

SQLJ

reference

157

|

|
|

|

|

|
|

|

|

getSqlCode

Format:

public

abstract

int

getSqlCode()

Returns

an

SQL

error

code

value.

getSqlErrd

Format:

public

abstract

int[]

getSqlErrd()

Returns

an

array,

each

element

of

which

contains

an

SQLCA

SQLERRD.

getSqlErrmc

Format:

public

abstract

String

getSqlErrmc()

Returns

a

string

that

contains

the

SQLCA

SQLERRMC

values,

delimited

with

spaces.

getSqlErrmcTokens

Format:

public

abstract

String[]

getSqlErrmcTokens()

Returns

an

array,

each

element

of

which

contains

an

SQLCA

SQLERRMC

token.

getSqlErrd

Format:

public

abstract

int[]

getSqlErrd()

Returns

an

array,

each

element

of

which

contains

an

SQLCA

SQLERRP

value.

getSqlErrp

Format:

public

abstract

String

getSqlErrp()

Returns

the

SQLCA

SQLERRP

value.

getSqlState

Format:

public

abstract

String

getSqlState()

Returns

the

SQLCA

SQLSTATE

value.

getSqlWarn

Format:

public

abstract

char[]

getSqlWarn()

Returns

an

array,

each

element

of

which

contains

an

SQLCA

SQLWARN

value.

DB2SystemMonitor

interface:

The

com.ibm.db2.jcc.DB2SystemMonitor

interface

is

used

for

collecting

system

monitoring

data

for

a

connection.

Each

connection

can

have

one

DB2SystemMonitor

instance.

DB2SystemMonitor

fields:

158

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|

|

The

following

fields

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

public

final

static

int

RESET_TIMES

public

final

static

int

ACCUMULATE_TIMES

These

values

are

arguments

for

the

DB2SystemMonitor.start

method.

RESET_TIMES

sets

time

counters

to

zero

before

monitoring

starts.

ACCUMULATE_TIMES

does

not

set

time

counters

to

zero.

DB2SystemMonitor

methods:

The

following

methods

are

defined

only

for

the

DB2

Universal

JDBC

Driver.

enable

Format:

public

void

enable(boolean

on)

throws

java.sql.SQLException

Enables

the

system

monitor

that

is

associated

with

a

connection.

This

method

cannot

be

called

during

monitoring.

All

times

are

reset

when

enable

is

invoked.

getApplicationTimeMillis

Format:

public

long

getApplicationTimeMillis()

throws

java.sql.SQLException

Returns

the

sum

of

the

application,

JDBC

driver,

network

I/O,

and

DB2

server

elapsed

times.

The

time

is

in

milliseconds.

A

monitored

elapsed

time

interval

is

the

difference,

in

milliseconds,

between

these

points

in

the

JDBC

driver

processing:

Interval

beginning

When

start

is

called.

Interval

end

When

stop

is

called.

getApplicationTimeMillis

returns

0

if

system

monitoring

is

disabled.

Calling

this

method

without

first

calling

the

stop

method

results

in

an

SQLException.

getCoreDriverTimeMicros

Format:

public

long

getCoreDriverTimeMicros()

throws

java.sql.SQLException

Returns

the

sum

of

elapsed

monitored

API

times

that

were

collected

while

system

monitoring

was

enabled.

The

time

is

in

microseconds.

A

monitored

API

is

a

JDBC

driver

method

for

which

processing

time

is

collected.

In

general,

elapsed

times

are

monitored

only

for

APIs

that

might

result

in

network

I/O

or

DB2

server

interaction.

For

example,

PreparedStatement.setXXX

methods

and

ResultSet.getXXX

methods

are

not

monitored.

Monitored

API

elapsed

time

includes

the

total

time

that

is

spent

in

the

driver

for

a

method

call.

This

time

includes

any

network

I/O

time

and

DB2

server

elapsed

time.

Chapter

4.

JDBC

and

SQLJ

reference

159

|

|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

A

monitored

API

elapsed

time

interval

is

the

difference,

in

microseconds,

between

these

points

in

the

JDBC

driver

processing:

Interval

beginning

When

a

monitored

API

is

called

by

the

application.

Interval

end

Immediately

before

the

monitored

API

returns

control

to

the

application.

getCoreDriverTimeMicros

returns

0

if

system

monitoring

is

disabled.

Calling

this

method

without

first

calling

the

stop

method,

or

calling

this

method

when

the

underlying

JVM

does

not

support

reporting

times

in

microseconds

results

in

an

SQLException.

getNetworkIOTimeMicros

Format:

public

long

getNetworkIOTimeMicros()

throws

java.sql.SQLException

Returns

the

sum

of

elapsed

network

I/O

times

that

were

collected

while

system

monitoring

was

enabled.

The

time

is

in

microseconds.

Elapsed

network

I/O

time

includes

the

time

to

write

and

read

DRDA

data

from

network

I/O

streams.

A

network

I/O

elapsed

time

interval

is

the

time

interval

to

perform

the

following

operations

in

the

JDBC

driver:

v

Issue

a

TCP/IP

command

to

send

a

DRDA

message

to

the

DB2

server.

This

time

interval

is

the

difference,

in

microseconds,

between

points

immediately

before

and

after

a

write

and

flush

to

the

network

I/O

stream

is

performed.

v

Issue

a

TCP/IP

command

to

receive

DRDA

reply

messages

from

the

DB2

server.

This

is

time

interval

is

the

difference,

in

microseconds,

between

points

immediately

before

and

after

a

read

on

the

network

I/O

stream

is

performed.

Network

I/O

time

intervals

are

captured

for

all

send

and

receive

operations,

including

the

sending

of

messages

for

commits

and

rollbacks.

The

time

spent

waiting

for

network

I/O

might

be

impacted

by

delays

in

CPU

dispatching

at

the

DB2

server

for

low-priority

SQL

requests.

Network

I/O

time

intervals

include

DB2

server

elapsed

time.

getNetworkIOTimeMicros

returns

0

if

system

monitoring

is

disabled.

Calling

this

method

without

first

calling

the

stop

method,

or

calling

this

method

when

the

underlying

JVM

does

not

support

reporting

times

in

microseconds

results

in

an

SQLException.

getServerTimeMicros

Format:

public

long

getServerTimeMicros()

throws

java.sql.SQLException

Returns

the

sum

of

all

reported

DB2

server

elapsed

times

that

were

collected

while

system

monitoring

was

enabled.

The

time

is

in

microseconds.

The

DB2

server

reports

elapsed

times

under

these

conditions:

v

The

server

supports

returning

elapsed

time

data

to

the

client.

v

The

server

performs

operations

that

can

be

monitored.

For

example,

DB2

server

elapsed

time

is

not

returned

for

commits

or

rollbacks.

160

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|

|

|
|

DB2

server

elapsed

time

is

defined

as

the

elapsed

time

to

parse

the

request

data

stream,

process

the

command,

and

generate

the

reply

data

stream

at

the

server.

Network

time

to

receive

or

send

the

data

stream

is

not

included.

a

DB2

server

elapsed

time

interval

is

the

difference,

in

microseconds,

between

these

points

in

the

server

processing:

Interval

beginning

When

the

operating

system

dispatches

DB2

to

process

a

TCP/IP

message

that

is

received

from

the

JDBC

driver.

Interval

end

When

DB2

is

ready

to

issue

the

TCP/IP

command

to

return

the

reply

message

to

the

client.

getServerTimeMicros

returns

0

if

system

monitoring

is

disabled.

Calling

this

method

without

first

calling

the

stop

method

results

in

an

SQLException.

start

Format:

public

void

start

(int

lapMode)

throws

java.sql.SQLException

If

the

system

monitor

is

enabled,

start

begins

the

collection

of

system

monitoring

data

for

a

connection.

Valid

values

for

lapMode

are

RESET_TIMES

or

ACCUMULATE_TIMES.

Calling

this

method

with

system

monitoring

disabled

does

nothing.

Calling

this

method

more

than

once

without

an

intervening

stop

call

results

in

an

SQLException.

stop

Format:

public

void

stop()

throws

java.sql.SQLException

If

the

system

monitor

is

enabled,

stop

ends

the

collection

of

system

monitoring

data

for

a

connection.

After

monitoring

is

stopped,

monitored

times

can

be

obtained

with

the

getXXX

methods

of

DB2SystemMonitor.

Calling

this

method

with

system

monitoring

disabled

does

nothing.

Calling

this

method

without

first

calling

start,

or

calling

this

method

more

than

once

without

an

intervening

start

call

results

in

an

SQLException.

JDBC

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers

The

DB2

Universal

JDBC

Driver

differs

from

the

JDBC/SQLJ

Driver

for

OS/390

in

the

following

areas:

Supported

methods:

The

DB2

Universal

JDBC

Driver

supports

a

number

of

JDBC

methods

that

the

other

drivers

do

not

support,

and

does

not

support

several

methods

that

the

other

drivers

support.

For

details,

see

“Comparison

of

driver

support

for

JDBC

APIs”

on

page

114.

Support

for

scrollable

and

updatable

ResultSets:

Chapter

4.

JDBC

and

SQLJ

reference

161

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

The

DB2

Universal

JDBC

Driver

supports

scrollable

and

updatable

ResultSets.

The

JDBC/SQLJ

driver

for

z/OS

support

only

non-scrollable

and

non-updatable

ResultSets.

Difference

in

URL

syntax:

The

syntax

of

the

url

parameter

in

the

DriverManager.getConnection

method

is

different

for

each

driver.

See

the

following

topics

for

more

information:

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

the

DB2

Universal

JDBC

Driver”

on

page

8

v

“Connecting

to

a

data

source

using

the

DriverManager

interface

with

a

JDBC/SQLJ

Driver

for

OS/390”

on

page

10

Difference

in

error

codes

and

SQLSTATEs

returned

for

driver

errors:

The

DB2

Universal

JDBC

Driver

does

not

use

existing

SQLCODEs

or

SQLSTATEs

for

internal

errors,

as

the

other

drivers

do.

See

“Error

codes

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

165

and

“SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver”

on

page

165.

The

JDBC/SQLJ

driver

for

z/OS

return

SQLSTATE

FFFFF

when

internal

errors

occur.

Security

mechanisms:

The

JDBC

drivers

have

different

security

mechanisms.

For

information

on

DB2

Universal

JDBC

Driver

security

mechanisms,

see“Security

under

the

DB2

Universal

JDBC

Driver”

on

page

243.

For

information

on

security

mechanisms

for

the

JDBC/SQLJ

driver

for

z/OS,

see

“Security

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

250.

How

connection

properties

are

set:

With

Universal

Driver

type

4

connectivity,

you

set

properties

for

a

connection

by

setting

the

properties

for

the

associated

DataSource

or

Connection

object.

With

Universal

Driver

type

2

connectivity,

you

set

properties

for

a

connection

in

one

of

these

ways:

v

You

can

set

properties

only

for

a

connection

by

setting

the

properties

for

the

associated

DataSource

or

Connection

object.

v

You

can

set

driver-wide

properties

through

an

optional

run-time

properties

file.

For

the

JDBC/SQLJ

driver

for

z/OS,

you

set

properties

through

the

JDBC/SQLJ

run-time

properties

file.

Support

for

read-only

connections:

With

the

DB2

Universal

JDBC

Driver,

you

can

make

a

connection

read-only

through

the

readOnly

property

for

a

Connection

or

DataSource

object.

The

JDBC/SQLJ

driver

for

z/OS

do

not

support

read-only

connections.

162

Application

Programming

Guide

and

Reference

for

Java™

Results

returned

from

ResultSet.getString

for

a

BIT

DATA

column:

The

DB2

Universal

JDBC

Driver

returns

data

from

a

ResultSet.getString

call

for

a

CHAR

FOR

BIT

DATA

or

VARCHAR

FOR

BIT

DATA

column

as

a

lowercase

hexadecimal

string.

The

JDBC/SQLJ

2.0

Driver

for

OS/390

returns

the

data

in

the

encoding

scheme

of

the

caller.

When

an

exception

is

thrown

for

PreparedStatement.setXXXStream

with

a

length

mismatch:

When

you

use

the

PreparedStatement.setBinaryStream

,

PreparedStatement.setCharacterStream,

or

PreparedStatement.setUnicodeStream

method,

the

length

parameter

value

must

match

the

number

of

bytes

in

the

input

stream.

If

the

numbers

of

bytes

do

not

match,

the

DB2

Universal

JDBC

Driver

does

not

throw

an

exception

until

the

subsequent

PreparedStatement.executeUpdate

method

executes.

Therefore,

for

the

DB2

Universal

JDBC

Driver,

some

data

might

be

sent

to

the

server

when

the

lengths

to

not

match.

That

data

is

truncated

or

padded

by

the

server.

The

calling

application

needs

to

issue

a

rollback

request

to

undo

the

database

updates

that

include

the

truncated

or

padded

data.

The

JDBC/SQLJ

2.0

Driver

for

OS/390

throws

an

exception

after

the

PreparedStatement.setBinaryStream,

PreparedStatement.setCharacterStream,

or

PreparedStatement.setUnicodeStream

method

executes.

Default

mappings

for

PreparedStatement.setXXXStream:

With

the

DB2

Universal

JDBC

Driver,

when

you

use

the

PreparedStatement.setBinaryStream

,

PreparedStatement.setCharacterStream,

or

PreparedStatement.setUnicodeStream

method,

and

no

information

about

the

data

type

of

the

target

column

is

available,

the

input

data

is

mapped

to

a

BLOB

or

CLOB

data

type.

For

the

JDBC/SQLJ

driver

for

z/OS,

the

input

data

is

mapped

to

a

VARCHAR

FOR

BIT

DATA

or

VARCHAR

data

type.

How

character

conversion

is

done:

When

character

data

is

transferred

between

a

client

and

a

server,

the

data

must

be

converted

to

a

form

that

the

receiver

can

process.

For

the

DB2

Universal

JDBC

Driver,

character

data

that

is

sent

from

the

database

server

to

the

client

is

converted

using

Java’s

built-in

character

converters.

The

conversions

that

the

DB2

Universal

JDBC

Driver

supports

are

limited

to

those

that

are

supported

by

the

underlying

JRE

implementation.

A

DB2

Universal

JDBC

Driver

client

sends

data

to

the

database

server

as

Unicode.

For

the

JDBC/SQLJ

driver

for

z/OS,

character

conversions

can

be

performed

if

the

conversions

are

supported

by

the

DB2

server.

Implicit

or

explicit

data

type

conversion

for

input

parameters:

Chapter

4.

JDBC

and

SQLJ

reference

163

If

you

execute

a

PreparedStatement.setXXX

method,

and

the

resulting

data

type

from

the

setXXX

method

does

not

match

the

data

type

of

the

table

column

to

which

the

parameter

value

is

assigned,

the

driver

returns

an

error

unless

data

type

conversion

occurs.

With

the

DB2

Universal

JDBC

Driver,

conversion

to

the

correct

SQL

data

type

occurs

implicitly

if

the

target

data

type

is

known

and

if

the

deferPrepares

connection

property

is

set

to

false.

In

this

case,

the

implicit

values

override

any

explicit

values

in

the

setXXX

call.

If

the

deferPrepares

connection

property

is

set

to

true,

you

must

use

the

PreparedStatement.setObject

method

to

convert

the

parameter

to

the

correct

SQL

data

type.

For

the

JDBC/SQLJ

driver

for

z/OS,

if

the

data

type

of

a

parameter

does

not

match

its

default

SQL

data

type,

you

must

use

the

PreparedStatement.setObject

method

to

convert

the

parameter

to

the

correct

SQL

data

type.

Data

returned

from

ResultSet.getBinaryStream

against

a

binary

column:

With

the

DB2

Universal

JDBC

Driver,

when

you

execute

ResultSet.getBinaryStream

against

a

binary

column,

the

returned

data

is

in

the

form

of

lowercase,

hexadecimal

digit

pairs.

With

the

JDBC/SQLJ

driver

for

z/OS,

when

you

execute

ResultSet.getBinaryStream

against

a

binary

column,

a

string

value

is

returned.

The

driver

uses

the

Java

client’s

default

local

encoding

to

construct

the

string

from

bytes.

Result

of

using

getBoolean

to

retrieve

a

value

from

a

CHAR

column:

With

the

DB2

Universal

JDBC

Driver,

when

you

execute

ResultSet.getBoolean

or

CallableStatement.getBoolean

to

retrieve

a

Boolean

value

from

a

CHAR

column,

and

the

column

contains

the

value

″false″

or

″0″,

the

value

false

is

returned.

If

the

column

contains

any

other

value,

true

is

returned.

With

the

JDBC/SQLJ

driver

for

z/OS,

when

you

execute

ResultSet.getBoolean

or

CallableStatement.getBoolean

to

retrieve

a

Boolean

value

from

a

CHAR

column,

and

the

column

contains

the

value

″0″,

the

value

false

is

returned.

If

the

column

contains

any

other

value,

true

is

returned.

Internal

use

of

LOB

locators

by

the

JDBC

drivers:

The

DB2

Universal

JDBC

Driver

uses

LOB

locators

internally

under

the

following

circumstances:

v

Always,

for

fetching

data

from

scrollable

cursors

v

Never,

for

fetching

data

from

stored

procedure

result

sets

v

If

the

fullyMaterializeLobData

connection

property

is

set

to

true,

in

all

other

cases

The

JDBC/SQLJ

2.0

Driver

for

OS/390

does

not

use

LOB

locators.

SQLJ

differences

between

the

DB2

Universal

JDBC

Driver

and

other

DB2

JDBC

drivers

SQLJ

support

in

the

DB2

Universal

JDBC

Driver

differs

from

SQLJ

support

in

the

other

DB2

JDBC

drivers

in

the

following

areas:

164

Application

Programming

Guide

and

Reference

for

Java™

Connection

associated

with

the

default

connection

context:

If

you

are

using

the

DataSource

interface

to

connect

to

a

data

source,

before

you

can

use

a

default

connection

context,

the

logical

name

jdbc/defaultDataSource

must

be

registered

with

JNDI.

The

JDBC/SQLJ

2.0

Driver

for

OS/390

creates

a

connection

to

the

local

data

source

for

the

default

connection

context.

Production

of

DBRMs

during

SQLJ

program

preparation:

The

SQLJ

program

preparation

process

for

the

the

DB2

Universal

JDBC

Driver

does

not

produce

DBRMs.

Therefore,

with

the

DB2

Universal

JDBC

Driver,

you

can

produce

DB2

packages

only

by

using

the

DB2

Universal

JDBC

Driver

utilities.

Difference

in

connection

techniques:

The

connection

techniques

that

are

available,

and

the

driver

names

and

URLs

that

are

used

for

those

connection

techniques,

vary

from

driver

to

driver.

See

“Connecting

to

a

data

source

using

SQLJ”

on

page

58

for

more

information.

Support

for

scrollable

and

updatable

iterators:

SQLJ

with

the

DB2

Universal

JDBC

Driver

supports

scrollable

and

updatable

iterators.

The

JDBC/SQLJ

driver

for

z/OS

support

only

non-scrollable

and

non-updatable

iterators.

Error

codes

issued

by

the

DB2

Universal

JDBC

Driver

Error

codes

in

the

ranges

+4200

to

+4299,

+4450

to

+4499,

-4200

to

-4299,

and

-4450

to

-4499

are

reserved

for

the

DB2

Universal

JDBC

Driver.

Currently,

the

DB2

Universal

JDBC

Driver

issues

the

following

error

codes:

-4200

An

application

that

was

in

a

global

transaction

in

an

XA

environment

issued

an

invalid

commit

or

rollback.

-4498

A

failover

or

failback

occurred,

and

the

transaction

failed.

-4499

A

fatal

error

occurred

that

resulted

in

a

disconnect.

-99999

The

DB2

Universal

JDBC

Driver

issued

an

error

that

does

not

yet

have

an

error

code.

SQLSTATEs

issued

by

the

DB2

Universal

JDBC

Driver

SQLSTATEs

in

the

range

46600

to

466ZZ

are

reserved

for

the

DB2

Universal

JDBC

Driver.

Currently,

the

DB2

Universal

JDBC

Driver

returns

a

null

SQLSTATE

value

for

an

internal

error,

unless

the

error

is

a

DRDA

error.

The

following

SQLSTATEs

are

issued

for

DRDA

errors:

08004

The

application

server

rejected

establishment

of

the

connection.

22021

A

character

is

not

in

the

coded

character

set.

24501

The

identified

cursor

is

not

open.

2D521

SQL

COMMIT

or

ROLLBACK

are

invalid

in

the

current

operating

environment.

Chapter

4.

JDBC

and

SQLJ

reference

165

58008

Execution

failed

due

to

a

distribution

protocol

error

that

will

not

affect

the

successful

execution

of

subsequent

DDM

commands

or

SQL

statements.

58009

Execution

failed

due

to

a

distribution

protocol

error

that

caused

deallocation

of

the

conversation.

58010

Execution

failed

due

to

a

distribution

protocol

error

that

will

affect

the

successful

execution

of

subsequent

DDM

commands

or

SQL

statements.

58014

The

DDM

command

is

not

supported.

58015

The

DDM

object

is

not

supported.

58016

The

DDM

parameter

is

not

supported.

58017

The

DDM

parameter

value

is

not

supported.

166

Application

Programming

Guide

and

Reference

for

Java™

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

Stored

procedures

and

user-defined

functions

are

programs

that

can

contain

SQL

statements.

You

invoke

a

stored

procedure

from

a

client

program

by

executing

the

SQL

CALL

statement.

You

invoke

a

user-defined

function

by

specifying

the

user-defined

function

name,

followed

by

its

arguments,

in

an

SQL

statement.

This

topic

contains

information

that

is

specific

to

defining

and

writing

Java

user-defined

functions

and

stored

procedures.

For

general

information

on

stored

procedures,

see

Part

6

of

DB2

Application

Programming

and

SQL

Guide.

For

general

information

on

user-defined

functions,

see

Part

3

of

DB2

Application

Programming

and

SQL

Guide.

For

information

on

preparing

Java

stored

procedures

or

user-defined

functions

for

execution,

see

“Preparing

Java

routines

for

execution”

on

page

211.

In

this

topic,

the

following

terminology

is

used:

v

The

word

routine

refers

to

either

a

stored

procedure

or

a

user-defined

function.

v

The

term

interpreted

Java

stored

routine

refers

to

a

stored

procedure

or

a

user-defined

function

that

runs

in

a

JVM.

The

following

topics

contain

more

information

about

Java

routines:

v

“Setting

up

the

environment

for

Java

routines”

v

“Defining

a

Java

routine

to

DB2”

on

page

173

v

“Defining

a

JAR

file

for

a

Java

routine

to

DB2”

on

page

177

v

“Writing

a

Java

routine”

on

page

181

v

“Testing

a

Java

routine”

on

page

185

Setting

up

the

environment

for

Java

routines

This

topic

discusses

the

setup

tasks

for

preparing

and

running

interpreted

Java

routines.

If

you

plan

to

use

DB2

Development

Center

to

prepare

and

run

your

interpreted

Java

routines,

see

the

following

URL

for

complete

instructions:

http://www.ibm.com/software/db2zos/sqlproc

Setting

up

the

environment

for

interpreted

Java

routines

To

set

up

the

environment

for

running

interpreted

Java

routines,

you

need

to

perform

these

tasks:

1.

Ensure

that

your

operating

system

and

the

Java

SDK

are

at

the

correct

levels,

and

that

you

have

installed

all

prerequisite

products.

See

“Prerequisites

for

interpreted

Java

routines”

for

a

list

of

requirements.

2.

Install

DB2

UDB

for

z/OS

Java

support.

See

Chapter

7,

“Installing

JDBC

and

SQLJ,”

on

page

217.

3.

Create

the

Workload

Manager

for

z/OS

(WLM)

application

environment

for

running

the

routines.

See

“Setting

up

the

WLM

application

environment

for

interpreted

Java

routines”

on

page

168.

4.

Set

environment

variables

that

are

required

by

Java

routines.

See

“Setting

the

run-time

environment

for

interpreted

Java

stored

procedures”

on

page

170.

Prerequisites

for

interpreted

Java

routines

In

addition

to

DB2

UDB

for

z/OS

with

Java

support,

you

need

to

install

the

following

products

for

interpreted

Java

stored

procedures:

v

z/OS

with

z/OS

UNIX

System

Services

(USS),

WLM,

and

RRS

v

IBM

Developer

Kit

for

z/OS,

Java

2

Technology

Edition,

SDK

1.4.1

level

or

later

©

Copyright

IBM

Corp.

1998,

2004

167

|

Setting

up

the

WLM

application

environment

for

interpreted

Java

routines

To

set

up

WLM

application

environments

for

stored

procedures

or

user-defined

functions,

you

need

to

define

a

JCL

startup

procedure

for

each

WLM

environment,

and

define

the

application

environment

to

WLM.

You

need

different

WLM

application

environments

for

interpreted

Java

routines

from

the

WLM

application

environments

you

use

for

other

routines.

Creating

the

WLM

address

space

startup

procedure:

The

address

space

startup

procedure

for

Java

routines

requires

extra

DD

statements

that

other

routines

do

not

need.

Figure

61

shows

an

example

of

a

startup

procedure

for

an

address

space

in

which

Java

routines

can

run.

The

JAVAENV

DD

statement

indicates

to

DB2

that

the

WLM

environment

is

for

Java

routines.

Notes

to

Figure

61:

�1�

In

this

line,

change

the

DB2SSN

value

to

your

DB2

UDB

for

z/OS

subsystem

name.

Change

the

APPLENV

value

to

the

name

of

the

application

environment

that

you

set

up

for

Java

stored

procedures.

The

maximum

value

of

NUMTCB

should

be

between

5

and

8.

For

testing

a

Java

stored

procedure,

NUMTCB=1

is

recommended.

With

NUMTCB=1,

only

one

JVM

is

started,

so

refreshing

the

WLM

environment

after

you

change

the

stored

procedure

takes

less

time.

�2�

JAVAENV

specifies

a

data

set

that

contains

Language

Environment®

run-time

options

for

Java

stored

procedures.

The

presence

of

this

DD

statement

indicates

to

DB2

that

the

WLM

environment

is

for

Java

routines.

For

an

interpreted

Java

routine,

this

data

set

must

contain

the

environment

variable

JAVA_HOME.

This

environment

variable

indicates

to

DB2

that

the

WLM

environment

is

for

interpreted

Java

routines.

JAVA_HOME

also

specifies

the

highest-level

directory

in

the

set

of

directories

that

containing

the

Java

SDK.

�3�

Specifies

a

data

set

into

which

DB2

puts

information

that

you

can

use

to

debug

your

stored

procedure.

The

information

that

DB2

collects

can

be

very

helpful

in

debugging

setup

problems,

and

also

contains

key

information

that

you

need

to

provide

when

you

submit

a

problem

to

IBM

Service.

You

should

comment

out

this

DD

statement

during

production.

Defining

the

WLM

application

environment:

To

define

the

application

environment

to

WLM,

specify

the

values

shown

on

the

following

WLM

panels.

//DSNWLM

PROC

RGN=0K,APPLENV=WLMIJAV,DB2SSN=DSN,NUMTCB=5

�1�

//IEFPROC

EXEC

PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

//

PARM=’&DB2SSN,&NUMTCB,&APPLENV’

//STEPLIB

DD

DISP=SHR,DSN=DSN810.RUNLIB.LOAD

//

DD

DISP=SHR,DSN=CEE.SCEERUN

//

DD

DISP=SHR,DSN=DSN810.SDSNEXIT

//

DD

DISP=SHR,DSN=DSN810.SDSNLOAD

//

DD

DISP=SHR,DSN=DSN810.SDSNLOD2

//JAVAENV

DD

DISP=SHR,DSN=WLMIJAV.JSPENV

�2�

//JSPDEBUG

DD

SYSOUT=A

�3�

//CEEDUMP

DD

SYSOUT=A

//SYSPRINT

DD

SYSOUT=A

Figure

61.

Startup

procedure

for

a

WLM

address

space

in

which

an

interpreted

Java

routine

runs

168

Application

Programming

Guide

and

Reference

for

Java™

||
|
|
|
|

File

Utilities

Notes

Options

Help

--

Definition

Menu

WLM

Appl

Command

===>

Definition

data

set

.

:

none

Definition

name

.

.

.

.

WLMENV

Description

.

.

.

.

.

.

Environment

for

Development

Center

Select

one

of

the

following

options.

.

.

9

1.

Policies

2.

Workloads

3.

Resource

Groups

4.

Service

Classes

5.

Classification

Groups

6.

Classification

Rules

7.

Report

Classes

8.

Service

Coefficients/Options

9.

Application

Environments

10.

Scheduling

Environments

Definition

name

Specify

the

name

of

the

WLM

application

environment

that

you

are

setting

up

for

stored

procedures.

Description

Specify

any

value.

Options

Specify

9

(Application

Environments).

Application-Environment

Notes

Options

Help

--

Create

an

Application

Environment

Command

===>

Application

Environment

Name

.

:

WLMENV

Description

.

.

.

.

.

.

.

.

.

.

Environment

for

Development

Center

Subsystem

Type

.

.

.

.

.

.

.

.

.

DB2

Procedure

Name

.

.

.

.

.

.

.

.

.

DSN8WLMP

Start

Parameters

.

.

.

.

.

.

.

.

DB2SSN=DB2T,NUMTCB=3,APPLENV=WLMENV

Limit

on

starting

server

address

spaces

for

a

subsystem

instance:

1

1.

No

limit.

2.

Single

address

space

per

system.

3.

Single

address

spaces

per

sysplex.

Subsystem

Type

Specify

DB2.

Procedure

Name

This

name

must

match

the

name

of

the

JCL

startup

procedure

for

the

stored

procedure

address

spaces

that

are

associated

with

this

application

environment.

Start

Parameters

If

the

DB2

subsystem

in

which

the

stored

procedure

runs

is

not

in

a

Sysplex,

the

DB2SSN

value

must

match

the

name

of

that

DB2

subsystem.

If

the

same

JCL

is

used

for

multiple

DB2

subsystems,

specify

DB2SSN=&IWMSSNM.

The

NUMTCB

value

depends

on

the

type

of

stored

procedure

you

are

running.

For

running

Java

routines,

the

maximum

value

that

you

specify

should

be

between

5

and

8.

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

169

The

APPLENV

value

must

match

the

value

that

you

specify

on

the

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

for

the

routines

that

run

in

this

application

environment.

Limit

on

starting

server

address

spaces

for

a

subsystem

instance

Specify

1

(no

limit).

Setting

the

run-time

environment

for

interpreted

Java

stored

procedures

For

Java

routines,

the

startup

procedure

for

the

stored

procedure

address

space

contains

a

JAVAENV

DD

statement.

This

statement

specifies

a

data

set

that

contains

Language

Environment

run-time

options

for

the

routines

that

run

in

the

stored

procedure

address

space.

Create

the

data

set

with

the

characteristics

that

are

listed

in

Table

44.

Table

44.

Data

set

characteristics

for

the

JAVAENV

data

set

Primary

space

allocation

1

block

Secondary

space

allocation

1

block

Record

format

VB

Record

length

255

Block

size

4096

After

you

create

the

data

set,

edit

it

to

insert

a

Language

Environment

options

string,

which

has

this

form:

��

XPLINK(ON),

�

,

ENVAR(

"

environment-variable

=

setting

"

),

�

�

MSGFILE(

,

,

,

,

)

ddname

recfm

lrecl

blksize

NOENQ

ENQ

��

The

maximum

length

of

the

Language

Environment

run-time

options

string

in

a

JAVAENV

data

set

for

interpreted

Java

stored

procedures

is

245

bytes.

If

you

exceed

the

maximum

length,

DB2

truncates

the

contents

but

does

not

issue

a

message.

If

you

enter

the

contents

of

the

JAVAENV

data

set

on

more

than

one

line,

DB2

concatenates

the

lines

to

form

the

run-time

options

string.

The

run-time

options

string

can

contain

no

leading

or

trailing

blanks.

Within

the

string,

only

blanks

that

are

valid

within

an

option

are

permitted.

If

your

environment

variable

list

is

long

enough

that

the

JAVAENV

content

is

greater

than

245

bytes,

you

can

put

the

environment

variable

list

in

a

separate

data

set

in

a

separate

file,

and

use

the

environment

variable

_CEE_ENVFILE

to

point

to

that

file.

Parameter

descriptions:

XPLINK(ON)

Causes

the

initialization

of

the

XPLINK

environment.

This

parameter

is

required

170

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|
|
|

||

||

||

||

||

||
|
|
|
|

||||||||||||||||||||||||||||||
|

|
|||

|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

for

Java

2

Technology

Edition,

SDK

1.4.1.

This

parameter

must

not

be

specified

for

Java

2

Technology

Edition,

SDK

1.3.1.

ENVAR

Sets

the

initial

values

for

specified

environment

variables.

The

environment

variables

that

you

might

need

to

specify

are:

CLASSPATH

When

you

prepare

your

Java

routines,

if

you

do

not

put

your

routine

classes

into

JAR

files,

include

the

directories

that

contain

those

classes.

For

example:

CLASSPATH=.:/U/DB2RES3/ACMEJOS

DB2_HOME

or

JCC_HOME

The

value

of

DB2_HOME

or

JCC_HOME

is

the

highest-level

directory

in

the

set

of

directories

that

contain

the

JDBC

driver.

Specify

only

one

of

these

environment

variables.

Use

DB2_HOME

if

your

Java

routines

run

under

the

JDBC/SQLJ

Driver

for

OS/390.

Use

JCC_HOME

if

your

Java

routines

run

under

the

DB2

Universal

JDBC

Driver.

For

example:

JCC_HOME=/usr/lpp/db2810

JAVA_HOME

This

environment

variable

indicates

to

DB2

that

the

WLM

environment

is

for

interpreted

Java

routines.

The

value

of

JAVA_HOME

is

the

highest-level

directory

in

the

set

of

directories

that

contain

the

Java

SDK.

For

example:

JAVA_HOME=/usr/lpp/java/IBM/J1.3

JVMPROPS

This

environment

variable

specifies

the

name

of

a

z/OS

UNIX

System

Services

file

that

contains

startup

options

for

the

JVM

in

which

the

stored

procedure

runs.

For

example:

JVMPROPS=/usr/lpp/java/properties/jvmsp

The

following

example

shows

the

contents

of

a

startup

options

file

that

you

might

use

for

a

JVM

in

which

Java

stored

procedures

run:

#

Properties

file

for

JVM

for

Java

stored

procedures

#

Sets

the

initial

size

of

middleware

heap

within

non-system

heap

-Xms64M

#

Sets

the

maximum

size

of

nonsystem

heap

-Xmx128M

#initial

size

of

application

class

system

heap

-Xinitacsh512K

#initial

size

of

system

heap

-Xinitsh512K

#initial

size

of

transient

heap

-Xinitth32M

For

information

about

JVM

startup

options,

see

Persistent

Reusable

Java

Virtual

Machine

User's

Guide,

available

at:

http://http://www.ibm.com/servers/eserver/zseries/software/java

Click

the

Reference

Information

link.

LC_ALL

Modify

LC_ALL

to

change

the

locale

to

use

for

the

locale

categories

when

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

171

|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|

the

individual

locale

environment

variables

specify

locale

information.

This

value

needs

to

match

the

CCSID

for

the

DB2

subsystem

on

which

the

stored

procedures

run.

For

example:

LC_ALL=En_US.IBM-037

TMSUFFIX

Specifies

a

list

of

directories

and

JAR

files

that

contain

classes

that

are

to

be

included

in

the

WLM

address

space’s

trusted

middleware

classes.

The

list

is

in

the

same

format

as

a

CLASSPATH

list.

Specify

TMSUFFIX

under

either

of

the

following

circumstances:

v

When

a

class

needs

control

over

its

static

members,

and

those

members

cannot

be

re-initialized

when

the

JVM

is

reset.

In

this

case,

you

can

define

a

tidy-up

method

that

is

executed

each

time

the

JVM

is

reset.

v

When

the

following

conditions

are

true:

–

Java

routines

that

use

certain

classes

fail

with

an

SQLSTATE

of

38503

and

an

error

code

-430.

–

The

associated

DSNX961I

console

message

indicates

that

the

JVM

cannot

be

reset.

–

The

action

that

prevents

the

JVM

from

being

reset

cannot

be

avoided.

The

only

way

to

be

able

to

reset

the

JVM

is

to

designate

the

classes

that

contain

the

needed

methods

as

trusted

middleware.

For

information

about

trusted

middleware,

static

data,

tidy-up

methods,

and

when

a

JVM

cannot

be

reset,

see

Persistent

Reusable

Java

Virtual

Machine

User's

Guide.

TZ

Modify

TZ

to

change

the

local

timezone.

For

example:

TZ=PST08

The

default

is

GMT.

_CEE_ENVFILE

Specifies

a

USS

data

set

that

contains

some

or

all

of

the

settings

for

environment

variables.

Use

the

_CEE_ENVFILE

parameter

if

the

length

of

environment

variable

string

causes

the

total

length

of

the

JAVAENV

content

to

exceed

245

bytes,

which

is

the

DB2

limit

for

the

JAVAENV

content.

The

data

set

must

be

variable-length.The

format

for

environment

variable

settings

in

this

data

set

is:

environment-variable-1=setting-1

environment-variable-2=setting-2

...

environment-variable-n=setting-n

You

can

specify

some

of

your

environment

variable

settings

as

arguments

of

ENVAR

and

put

some

of

the

settings

in

this

data

set,

or

you

can

put

all

of

your

environment

variable

settings

in

this

data

set.

For

example,

to

use

file

/u/db281/javasp/jspnolimit.txt

for

environment

variable

settings,

specify:

_CEE_ENVFILE=/u/db281/javasp/jspnolimit.txt

MSGFILE

Specifies

the

DD

name

of

a

data

set

in

which

Language

Environment

puts

run-time

diagnostics.

All

subparameters

in

the

MSGFILE

parameter

are

optional.

The

default

is

172

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

|

|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|

|
|
|

||

|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|

|
|
|
|

MSGFILE(SYSOUT,FBA,121,0,NOENQ)

If

you

specify

a

data

set

name

in

the

JSPDEBUG

statement

of

your

stored

procedure

address

space

startup

procedure,

you

need

to

specify

JSPDEBUG

as

the

first

parameter.

If

the

NUMTCB

value

in

the

stored

procedure

address

space

startup

procedure

is

greater

than

1,

you

need

to

specify

ENQ

as

the

fifth

subparameter.

z/OS

Language

Environment

Programming

Reference

contains

complete

information

about

MSGFILE.

The

following

example

shows

the

contents

of

a

JAVAENV

data

set.

ENVAR("JCC_HOME=/usr/lpp/db2810",

"JAVA_HOME=/usr/lpp/javas13/J1.3",

"WORK_DIR=/u/db281/tmp"),

MSGFILE(JSPDEBUG)

For

information

on

environment

variables

that

are

related

to

locales,

see

z/OS

C/C++

Programming

Guide.

Defining

a

Java

routine

to

DB2

Defining

a

Java

routine

to

DB2

involves

one

or

two

steps,

depending

on

where

the

routine

resides:

v

For

interpreted

Java

routines

that

you

store

in

JAR

files,

you

need

to

define

the

JAR

files

to

DB2.

If

you

prepare

the

Java

routine

for

execution

without

DB2

Development

Center,

use

the

SQLJ.INSTALL_JAR

built-in

stored

procedure

to

define

the

JAR

files

to

DB2.

To

replace

or

delete

the

JAR

file,

use

the

SQLJ.REPLACE_JAR

or

SQLJ.REMOVE_JAR

stored

procedure.

These

stored

procedures

are

discussed

in

detail

in

“Defining

a

JAR

file

for

a

Java

routine

to

DB2”

on

page

177.

v

For

all

types

of

Java

routines,

you

need

to

define

the

routine

to

DB2.

If

you

prepare

the

Java

routine

for

execution

without

DB2

Development

Center,

execute

the

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

define

the

routine

to

DB2.

To

alter

the

routine

definition,

use

the

ALTER

PROCEDURE

or

ALTER

FUNCTION

statement.

For

information

on

these

statements,

see

Chapter

5

of

DB2

SQL

Reference.

If

you

use

the

DB2

Development

Center

to

prepare

your

Java

stored

procedures

for

execution,

the

DB2

Development

Center

defines

the

Java

routine

and

the

JAR

file

to

DB2

for

you.

The

definition

for

a

Java

routine

is

much

like

the

definition

for

a

routine

in

any

other

language.

However,

the

following

parameters

have

different

meanings

for

Java

routines.

LANGUAGE

Specifies

the

application

programming

language

in

which

the

routine

is

written.

Specify

LANGUAGE

JAVA.

You

cannot

specify

LANGUAGE

JAVA

for

a

user-defined

table

function.

EXTERNAL

NAME

Specifies

the

program

that

runs

when

the

procedure

name

is

specified

in

a

CALL

statement

or

the

user-defined

function

name

is

specified

in

an

SQL

statement.

For

Java

routines,

the

argument

of

EXTERNAL

NAME

is

a

string

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

173

|

|
|
|
|
|
|

|

|
|
|
|

|
|

|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|

|

|

|
|
|
|

that

is

enclosed

in

single

quotation

marks.

The

EXTERNAL

NAME

clause

for

a

Java

routine

has

the

following

syntax:

��

EXTERNAL

NAME

�

�

'

class-name.method-name

'

(1)

(2)

(method-signature)

JAR-name:

package-name

.

��

Notes:

1 For

compatibility

with

DB2

UDB

for

Linux,

UNIX

and

Windows,

you

can

use

an

exclamation

point

(!)

after

JAR-name

instead

of

a

colon.

2 For

compatibility

with

previous

versions

of

DB2,

you

can

use

a

slash

(/)

after

package-name

instead

of

a

period.

Whether

you

include

JAR-name

depends

on

where

the

Java

code

for

the

routine

resides.

If

you

create

a

JAR

file

from

the

class

file

for

the

routine

(the

output

from

the

javac

command),

you

need

to

include

JAR-name.

You

must

create

the

JAR

file

and

define

the

JAR

file

to

DB2

before

you

execute

the

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement.

If

some

other

user

executes

the

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement,

you

need

to

grant

the

USAGE

privilege

on

the

JAR

to

them.

If

you

use

a

JAR

file,

that

JAR

file

must

be

self-contained.

That

is,

if

a

class

within

the

JAR

file

references

another

class,

the

referenced

class

must

be

also

be

in

the

JAR

file.

The

exception

to

this

rule

is

that

classes

that

are

in

directories

that

are

referenced

in

CLASSPATH,

DB2_HOME

or

JCC_HOME,,

and

JAVA_HOME

do

not

need

to

be

included

in

the

JAR

file.

Whether

you

include

(method-signature)

depends

on

the

following

factors:

v

The

way

that

you

define

the

parameters

in

your

routine

method

Each

SQL

data

type

has

a

corresponding

default

Java

data

type.

If

your

routine

method

uses

data

types

other

than

the

default

types,

you

need

to

include

a

method

signature

in

the

EXTERNAL

NAME

clause.

A

method

signature

is

a

comma-separated

list

of

data

types.

v

Whether

you

overload

a

Java

routine

If

you

have

several

Java

methods

in

the

same

class,

with

the

same

name

and

different

parameter

types,

you

need

to

specify

the

method

signature

to

indicate

which

version

of

the

program

is

associated

with

the

Java

routine.

If

your

stored

procedure

returns

result

sets,

you

also

need

to

include

a

parameter

in

the

method

signature

for

each

result

set.

The

parameter

can

be

in

one

of

the

following

forms:

v

java.sql.ResultSet[]

v

An

array

of

an

SQLJ

iterator

class

You

do

not

include

these

parameters

in

the

parameter

list

of

the

SQL

CALL

statement

when

you

invoke

the

stored

procedure.

Table

11

on

page

105

shows

the

SQL

data

types

that

you

can

specify

in

the

parameter

definition

and

the

corresponding

Java

data

types

that

you

can

specify

in

the

method

signature.

174

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

|||||
|

|
||||||||||||||||||||||||||||||

|

|

||
|

||
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|

Example:

EXTERNAL

NAME

clause

for

a

Java

user-defined

function:

Suppose

that

you

write

a

Java

user-defined

function

as

method

getSals

in

class

S1Sal

and

package

s1.

You

put

S1Sal

in

a

JAR

file

named

sal_JAR

and

install

that

JAR

in

DB2.

The

EXTERNAL

NAME

parameter

is

:

EXTERNAL

NAME

'sal_JAR:s1.S1Sal.getSals'

Example:

EXTERNAL

NAME

clause

for

a

Java

stored

procedure:

Suppose

that

you

write

a

Java

stored

procedure

as

method

getSals

in

class

S1Sal.

You

put

S1Sal

in

a

JAR

file

named

sal_JAR

and

install

that

JAR

in

DB2.

The

stored

procedure

has

one

input

parameter

of

type

INTEGER

and

returns

one

result

set.

The

Java

method

for

the

stored

procedure

receives

one

parameter

of

type

java.lang.Integer,

but

the

default

Java

data

type

for

an

SQL

type

of

INTEGER

is

int,

so

the

EXTERNAL

NAME

clause

requires

a

signature

clause.

The

EXTERNAL

NAME

parameter

is

:

EXTERNAL

NAME

'sal_JAR:S1Sal.getSals(java.lang.Integer,java.sql.ResultSet[])'

NO

SQL

Indicates

that

the

routine

does

not

contain

any

SQL

statements.

For

a

Java

routine

that

is

stored

in

a

JAR

file,

you

cannot

specify

NO

SQL.

PARAMETER

STYLE

Identifies

the

linkage

convention

that

is

used

to

pass

parameters

to

the

routine.

For

a

Java

routine,

the

only

value

that

is

valid

is

PARAMETER

STYLE

JAVA.

You

cannot

specify

PARAMETER

STYLE

JAVA

for

a

user-defined

table

function.

WLM

ENVIRONMENT

Identifies

the

MVS

workload

manager

(WLM)

environment

in

which

the

routine

is

to

run

when

the

DB2

stored

procedure

address

space

is

WLM-established.

If

you

do

not

specify

this

parameter,

the

routine

runs

in

the

default

WLM

environment

that

was

specified

when

DB2

was

installed.

PROGRAM

TYPE

Specifies

whether

Language

Environment

runs

the

routine

as

a

main

routine

or

a

subroutine.

This

parameter

value

must

be

PROGRAM

TYPE

SUB.

RUN

OPTIONS

Specifies

the

Language

Environment

run-time

options

to

be

used

for

the

routine.

This

parameter

has

no

meaning

for

a

Java

routine.

If

you

specify

this

parameter

with

LANGUAGE

JAVA,

DB2

issues

an

error.

SCRATCHPAD

Specifies

that

when

the

user-defined

function

is

invoked

for

the

first

time,

DB2

allocates

memory

for

a

scratchpad.

You

cannot

use

a

scratchpad

in

a

Java

user-defined

function.

Do

not

specify

SCRATCHPAD

when

you

create

or

alter

a

Java

user-defined

function.

FINAL

CALL

Specifies

that

a

final

call

is

made

to

the

user-defined

function,

which

the

function

can

use

to

free

any

system

resources

that

it

has

acquired.

You

cannot

perform

a

final

call

when

you

call

a

Java

user-defined

function.

Do

not

specify

FINAL

CALL

when

you

create

or

alter

a

Java

user-defined

function.

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

175

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|
|
|

|
|

|
|
|

|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

DBINFO

Specifies

that

when

the

routine

is

invoked,

an

additional

argument

is

passed

that

contains

environment

information.

You

cannot

pass

the

additional

argument

when

you

call

a

Java

routine.

Do

not

specify

DBINFO

when

you

call

a

Java

routine.

SECURITY

Specifies

how

the

routine

interacts

with

an

external

security

product,

such

as

RACF,

to

control

access

to

non-SQL

resources.

The

values

of

the

SECURITY

parameter

are

the

same

for

a

Java

routine

as

for

any

other

routine.

However,

the

value

of

the

SECURITY

parameter

determines

the

authorization

ID

that

must

have

authority

to

access

z/OS

UNIX

System

Services.

The

values

of

SECURITY

and

the

IDs

that

must

have

access

to

z/OS

UNIX

System

Services

are:

DB2

The

user

ID

that

is

defined

for

the

stored

procedure

address

space

in

the

RACF

started-procedure

table.

EXTERNAL

The

invoker

of

the

routine.

DEFINER

The

definer

of

the

routine.

For

a

complete

explanation

of

the

parameters

in

a

CREATE

PROCEDURE,

CREATE

FUNCTION,

ALTER

PROCEDURE

or

ALTER

FUNCTION

statement,

see

Chapter

5

of

DB2

SQL

Reference.

Example:

Defining

a

Java

stored

procedure:

Suppose

that

you

have

written

and

prepared

a

stored

procedure

that

has

these

characteristics:

Fully-qualified

procedure

name

SYSPROC.S1SAL

Parameters

DECIMAL(10,2)

INOUT

Language

Java

Collection

ID

for

the

stored

procedure

package

DSNJDBC

Package,

class,

and

method

name

s1.S1Sal.getSals

Type

of

SQL

statements

in

the

program

Statements

that

modify

DB2

tables

WLM

environment

name

WLMIJAV

Maximum

number

of

result

sets

returned

1

This

CREATE

PROCEDURE

statement

defines

the

stored

procedure

to

DB2:

CREATE

PROCEDURE

SYSPROC.S1SAL

(DECIMAL(10,2)

INOUT)

FENCED

MODIFIES

SQL

DATA

COLLID

DSNJDBC

LANGUAGE

JAVA

EXTERNAL

NAME

's1.S1Sal.getSals'

WLM

ENVIRONMENT

WLMIJAV

DYNAMIC

RESULT

SETS

1

PROGRAM

TYPE

SUB

PARAMETER

STYLE

JAVA;

Example:

Defining

a

Java

user-defined

function:

Suppose

that

you

have

written

and

prepared

a

user-defined

function

that

has

these

characteristics:

Fully-qualified

function

name

MYSCHEMA.S2SAL

176

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

|
|

|
|
|
|
|
|
|
|

||
|

|
|

|
|

|
|
|

|
|

|||
||
||
|
|
|

||
||
||
||
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|||

Input

parameter

INTEGER

Data

type

of

returned

value

VARCHAR(20)

Language

Java

Collection

ID

for

the

function

package

DSNJDBC

Package,

class,

and

method

name

s2.S2Sal.getSals

Java

data

type

of

the

method

input

parameter

java.lang.Integer

JAR

file

that

contains

the

function

class

sal_JAR

Type

of

SQL

statements

in

the

program

Statements

that

modify

DB2

tables

Function

is

called

when

input

parameter

is

null?

Yes

WLM

environment

name

WLMIJAV

This

CREATE

FUNCTION

statement

defines

the

user-defined

function

to

DB2:

CREATE

FUNCTION

MYSCHEMA.S2SAL(INTEGER)

RETURNS

VARCHAR(20)

FENCED

MODIFIES

SQL

DATA

COLLID

DSNJDBC

LANGUAGE

JAVA

EXTERNAL

NAME

'sal_JAR:s2.S2Sal.getSals(java.lang.Integer)'

WLM

ENVIRONMENT

WLMIJAV

CALLED

ON

NULL

INPUT

PROGRAM

TYPE

SUB

PARAMETER

STYLE

JAVA;

In

this

function

definition,

you

need

to

specify

a

method

signature

in

the

EXTERNAL

NAME

clause

because

the

data

type

of

the

method

input

parameter

is

different

from

the

default

Java

data

type

for

an

SQL

type

of

INTEGER.

Defining

a

JAR

file

for

a

Java

routine

to

DB2

One

way

to

organize

the

classes

for

a

Java

routine

is

to

collect

those

classes

into

a

JAR

file,

as

described

in

“Creating

JAR

files

for

Java

routines”

on

page

214.

If

you

do

this,

you

need

to

install

the

JAR

file

into

the

DB2

catalog.

DB2

provides

five

built-in

stored

procedures

that

perform

the

following

functions

for

the

JAR

file:

SQLJ.INSTALL_JAR

Installs

a

JAR

file

into

the

local

DB2

catalog.

SQLJ.REPLACE_JAR

Replaces

an

existing

JAR

file

in

the

local

DB2

catalog.

SQLJ.REMOVE_JAR

Deletes

a

JAR

file

from

the

local

DB2

catalog

or

a

remote

DB2

catalog.

SQLJ.DB2_INSTALL_JAR

Installs

a

JAR

file

into

the

local

DB2

catalog

or

a

remote

DB2

catalog.

SQLJ.DB2_REPLACE_JAR

Replaces

an

existing

JAR

file

in

the

local

DB2

catalog

or

a

remote

DB2

catalog.

You

can

use

the

DB2

Development

Center

to

install

JAR

files

into

the

DB2

catalog,

or

you

can

write

a

client

program

that

executes

SQL

CALL

statements

to

invoke

the

stored

procedures.

The

following

information

describes

how

to

call

the

stored

procedures.

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

177

||
||
||
||
||
||
||
||
|
|
|

||
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

Calling

SQLJ.INSTALL_JAR

Use

SQLJ.INSTALL_JAR

to

create

a

new

definition

of

a

JAR

file

in

the

local

DB2

catalog.

SQLJ.INSTALL_JAR

authorization

To

call

SQLJ.INSTALL_JAR,

you

need

the

following

privileges:

v

The

EXECUTE

privilege

on

SQLJ.INSTALL_JAR.

v

If

the

SQL

authorization

ID

of

the

process

under

which

SQLJ.INSTALL_JAR

is

invoked

is

not

the

same

as

the

schema

for

the

JAR,

you

need

one

of

the

following

authorizations:

–

SYSADM

or

SYSCTRL

authority

–

The

CREATEIN

privilege

on

the

designated

schema

for

the

JAR.

SQLJ.INSTALL_JAR

syntax

��

CALL

SQLJ.INSTALL_JAR

(

url,

JAR-name,

deploy

)

��

SQLJ.INSTALL_JAR

parameters

url

A

VARCHAR(1024)

input

parameter

that

identifies

the

z/OS

UNIX

System

Services

full

path

name

for

the

JAR

file

that

is

to

be

installed

in

the

DB2

catalog.

The

format

is

file://path-name

or

file:/path-name.

JAR-name

A

VARCHAR(257)

input

parameter

that

contains

the

DB2

name

of

the

JAR,

in

the

form

schema.JAR-id

or

JAR-id.

This

is

the

name

that

you

use

when

you

refer

to

the

JAR

in

SQL

statements.

If

you

omit

schema,

DB2

uses

the

SQL

authorization

ID

that

is

in

the

CURRENT

SQLID

special

register.

deploy

An

INTEGER

input

parameter

that

indicates

whether

additional

actions

should

be

performed

after

the

JAR

file

is

installed.

Additional

actions

are

not

supported,

so

this

value

should

always

be

0.

Calling

SQLJ.REPLACE_JAR

Use

SQLJ.REPLACE_JAR

to

replace

an

existing

JAR

file

in

the

local

DB2

catalog.

SQLJ.REPLACE_JAR

authorization

To

call

SQLJ.REPLACE_JAR,

you

need

the

following

privileges:

v

The

EXECUTE

privilege

on

SQLJ.REPLACE_JAR.

v

If

the

SQL

authorization

ID

of

the

process

under

which

SQLJ.REPLACE_JAR

is

invoked

is

not

the

same

as

the

schema

for

the

JAR,

you

need

one

of

the

following

authorizations:

–

SYSADM

or

SYSCTRL

authority

–

The

DROPIN

and

CREATEIN

privileges

on

the

designated

schema

for

the

JAR.

178

Application

Programming

Guide

and

Reference

for

Java™

|

|
|

|
|

|

|
|
|

|

|

|
|

|||||||||||||||||||
|
|

|

||
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|

|

|
|
|

|

|
|

SQLJ.REPLACE_JAR

syntax

��

CALL

SQLJ.REPLACE_JAR

(

url,

JAR-name

)

��

SQLJ.REPLACE_JAR

parameters

url

A

VARCHAR(1024)

input

parameter

that

identifies

the

z/OS

UNIX

System

Services

full

path

name

for

the

JAR

file

that

replaces

the

existing

JAR

file

in

the

DB2

catalog.

The

format

is

file://path-name

or

file:/path-name.

JAR-name

A

VARCHAR(257)

input

parameter

that

contains

the

DB2

name

of

the

JAR,

in

the

form

schema.JAR-id

or

JAR-id.

This

is

the

name

that

you

use

when

you

refer

to

the

JAR

in

SQL

statements.

If

you

omit

schema,

DB2

uses

the

SQL

authorization

ID

that

is

in

the

CURRENT

SQLID

special

register.

Calling

SQLJ.REMOVE_JAR

Use

SQLJ.REMOVE_JAR

to

delete

a

JAR

file

from

the

local

DB2

catalog

or

a

remote

DB2

catalog.

To

delete

a

JAR

file

at

a

remote

location,

you

need

to

execute

a

CONNECT

statement

to

connect

to

that

location

before

you

call

SQLJ.REMOVE_JAR.

SQLJ.REMOVE_JAR

authorization

To

call

SQLJ.REMOVE_JAR,

you

need

the

following

privileges:

v

The

EXECUTE

privilege

on

SQLJ.REMOVE_JAR.

v

If

the

SQL

authorization

ID

of

the

process

under

which

SQLJ.REMOVE_JAR

is

invoked

is

not

the

same

as

the

schema

for

the

JAR,

you

need

one

of

the

following

authorizations:

–

SYSADM

or

SYSCTRL

authority

–

The

DROPIN

privilege

on

the

designated

schema

for

the

JAR.

SQLJ.REMOVE_JAR

syntax

��

CALL

SQLJ.REMOVE_JAR

(

JAR-name,

undeploy

)

��

SQLJ.REMOVE_JAR

parameters

JAR-name

A

VARCHAR(257)

input

parameter

that

contains

the

DB2

name

of

the

JAR

that

is

to

be

removed

from

the

catalog,

in

the

form

schema.JAR-id

or

JAR-id.

This

is

the

name

that

you

use

when

you

refer

to

the

JAR

in

SQL

statements.

If

you

omit

schema,

DB2

uses

the

SQL

authorization

ID

that

is

in

the

CURRENT

SQLID

special

register.

undeploy

An

INTEGER

input

parameter

that

indicates

whether

additional

actions

should

be

performed

before

the

JAR

file

is

removed.

Additional

actions

are

not

supported,

so

this

value

should

always

be

0.

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

179

|
|

|||||||||||||||||
|
|

|

||
|
|

|
|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|

|

|
|

|||||||||||||||||
|
|

|

|
|
|
|
|
|

|
|
|
|

Calling

SQLJ.DB2_INSTALL_JAR

Use

SQLJ.DB2_INSTALL_JAR

to

create

a

new

definition

of

a

JAR

file

in

the

local

DB2

catalog

or

a

remote

DB2

catalog.

To

install

a

JAR

file

at

a

remote

location,

you

need

to

execute

a

CONNECT

statement

to

connect

to

that

location

before

you

call

SQLJ.DB2_INSTALL_JAR.

SQLJ.DB2_INSTALL_JAR

authorization

To

call

SQLJ.DB2_INSTALL_JAR,

you

need

the

following

privileges:

v

The

EXECUTE

privilege

on

SQLJ.DB2_INSTALL_JAR.

v

If

the

SQL

authorization

ID

of

the

process

under

which

SQLJ.DB2_INSTALL_JAR

is

invoked

is

not

the

same

as

the

schema

for

the

JAR,

you

need

one

of

the

following

authorizations:

–

SYSADM

or

SYSCTRL

authority

–

The

CREATEIN

privilege

on

the

designated

schema

for

the

JAR.

SQLJ.DB2_INSTALL_JAR

syntax

��

CALL

SQLJ.DB2_INSTALL_JAR

(

Jar-locator,

JAR-name,

deploy

)

��

SQLJ.DB2_INSTALL_JAR

parameters

JAR-locator

A

BLOB

locator

input

parameter

that

points

to

the

JAR

file

that

is

to

be

installed

in

the

DB2

catalog.

JAR-name

A

VARCHAR(257)

input

parameter

that

contains

the

DB2

name

of

the

JAR,

in

the

form

schema.JAR-id

or

JAR-id.

This

is

the

name

that

you

use

when

you

refer

to

the

JAR

in

SQL

statements.

If

you

omit

schema,

DB2

uses

the

SQL

authorization

ID

that

is

in

the

CURRENT

SQLID

special

register.

deploy

An

INTEGER

input

parameter

that

indicates

whether

additional

actions

should

be

performed

after

the

JAR

file

is

installed.

Additional

actions

are

not

supported,

so

this

value

should

always

be

0.

Calling

SQLJ.DB2_REPLACE_JAR

Use

SQLJ.DB2_REPLACE_JAR

to

replace

an

existing

JAR

file

in

the

local

DB2

catalog

or

in

a

remote

DB2

catalog.

To

replace

a

JAR

file

at

a

remote

location,

you

need

to

execute

a

CONNECT

statement

to

connect

to

that

location

before

you

call

SQLJ.DB2_REPLACE_JAR.

SQLJ.DB2_REPLACE_JAR

authorization

To

call

SQLJ.DB2_REPLACE_JAR,

you

need

the

following

privileges:

v

The

EXECUTE

privilege

on

SQLJ.REPLACE_JAR.

v

If

the

SQL

authorization

ID

of

the

process

under

which

SQLJ.DB2_REPLACE_JAR

is

invoked

is

not

the

same

as

the

schema

for

the

JAR,

you

need

one

of

the

following

authorizations:

–

SYSADM

or

SYSCTRL

authority

–

The

DROPIN

and

CREATEIN

privileges

on

the

designated

schema

for

the

JAR.

180

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|
|

|
|

|

|
|
|

|

|

|
|

|||||||||||||||||||
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|

|
|

SQLJ.DB2_REPLACE_JAR

syntax

��

CALL

SQLJ.DB2_REPLACE_JAR

(

JAR-locator,

JAR-name

)

��

SQLJ.DB2_REPLACE_JAR

parameters

JAR-locator

A

BLOB

locator

input

parameter

that

points

to

the

JAR

file

that

is

to

be

replaced

in

the

DB2

catalog.

JAR-name

A

VARCHAR(257)

input

parameter

that

contains

the

DB2

name

of

the

JAR,

in

the

form

schema.JAR-id

or

JAR-id.

This

is

the

name

that

you

use

when

you

refer

to

the

JAR

in

SQL

statements.

If

you

omit

schema,

DB2

uses

the

SQL

authorization

ID

that

is

in

the

CURRENT

SQLID

special

register.

Writing

a

Java

routine

A

Java

routine

is

a

Java

application

program

that

runs

in

a

stored

procedure

address

space.

It

can

include

JDBC

methods

or

SQLJ

clauses.

A

Java

routine

is

much

like

any

other

Java

program

and

follows

the

same

rules

as

routines

in

other

languages.

It

receives

input

parameters,

executes

Java

statements,

optionally

executes

SQLJ

clauses,

JDBC

methods,

or

a

combination

of

both,

and

returns

output

parameters.

Differences

between

Java

routines

and

stand-alone

Java

programs

A

Java

routine

differs

from

a

stand-alone

Java

program

in

the

following

ways:

v

In

a

Java

routine,

a

JDBC

connection

or

an

SQLJ

connection

context

can

use

the

connection

to

the

data

source

that

processes

the

CALL

statement

or

the

user-defined

function

invocation.

The

URL

that

identifies

this

default

connection

is

jdbc:default:connection.

v

The

top-level

method

for

a

Java

routine

must

be

declared

as

static

and

public.

Although

you

can

use

static

and

final

variables

in

a

Java

routine

without

problems,

you

might

encounter

problems

when

you

use

static

and

non-final

variables.

You

cannot

guarantee

that

a

static

and

non-final

variable

retains

its

value

in

the

following

circumstances:

–

Across

multiple

invocations

of

the

same

routine

–

Across

invocations

of

different

routines

that

reference

that

variable

See

“Using

static

and

non-final

variables

in

a

Java

routine”

on

page

182

for

more

information

on

how

to

use

static

and

non-final

variables.

v

As

in

routines

in

other

languages,

the

SQL

statements

that

you

can

execute

in

the

routine

depend

on

whether

you

specify

an

SQL

access

level

of

NO

SQL,

CONTAINS

SQL,

READS

SQL

DATA,

or

MODIFIES

SQL

DATA.

See

Appendix

B

of

DB2

SQL

Reference

for

a

list

of

the

SQL

statements

that

you

can

execute

for

each

access

level.

Differences

between

Java

routines

and

other

routines

A

Java

routine

differs

from

stored

procedures

that

are

written

in

other

languages

in

the

following

ways:

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

181

|
|

|||||||||||||||||
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|

v

A

Java

routine

must

be

defined

with

PARAMETER

STYLE

JAVA.

PARAMETER

STYLE

JAVA

specifies

that

the

routine

uses

a

parameter-passing

convention

that

conforms

to

the

Java

language

and

SQLJ

specifications.

DB2

passes

INOUT

and

OUT

parameters

as

single-entry

arrays.

This

means

that

in

your

Java

routine,

you

must

declare

OUT

or

INOUT

parameters

as

arrays.

For

example,

suppose

that

stored

procedure

sp_one_out

has

one

output

parameter

of

type

int.

You

declare

the

parameter

like

this:

public

static

void

routine_one_out

(int[]

out_parm)

v

Java

routines

that

are

Java

main

methods

have

these

restrictions:

–

The

method

must

have

a

signature

of

String[].

It

must

be

possible

to

map

all

the

parameters

to

Java

variables

of

type

java.lang.String.

–

The

routine

can

have

only

IN

parameters.

v

You

cannot

make

instrumentation

facility

interface

(IFI)

calls

in

Java

routines.

v

As

in

other

Java

programs,

you

cannot

include

the

following

statements

in

a

Java

routine:

–

CONNECT

–

RELEASE

–

SET

CONNECTION

v

The

mappings

between

data

types

for

routine

parameters

and

host

data

types

follow

the

rules

for

mappings

between

SQL

and

SQLJ

data

types

shown

in

“Java,

JDBC,

and

SQL

data

types”

on

page

101.

v

The

technique

for

returning

result

sets

from

Java

stored

procedures

is

different

from

the

technique

for

returning

result

sets

in

other

stored

procedures.

See

“Writing

a

Java

stored

procedure

to

return

result

sets”

on

page

183

for

information

on

how

to

cause

a

Java

stored

procedure

to

return

result

sets.

Using

static

and

non-final

variables

in

a

Java

routine

Using

static

and

non-final

variables

can

cause

problems

for

Java

routines

for

the

following

reasons:

v

Use

of

variables

that

are

static

and

non-final

reduces

portability.

Because

the

ANSI/ISO

standard

does

not

include

support

for

static

and

non-final

variables,

different

database

products

might

process

those

variables

differently.

v

A

sequence

of

routine

invocations

is

not

necessarily

processed

by

the

same

JVM,

and

static

variable

values

are

not

shared

among

different

JVMs.

For

example,

suppose

that

two

stored

procedures,

INITIALIZE

and

PROCESS,

use

the

same

static

variable,

sv1.

INITIALIZE

sets

the

value

of

sv1,

and

PROCESS

depends

on

the

value

of

sv1.

If

INITIALIZE

runs

in

one

JVM,

and

then

PROCESS

runs

in

another

JVM,

sv1

in

PROCESS

does

not

contain

the

value

that

INTIALIZE

set.

Specifying

NUMTCB=1

in

the

WLM-established

stored

process

space

startup

procedure

is

not

sufficient

to

guarantee

that

a

sequence

of

routine

invocations

go

to

the

same

JVM.

Under

load,

multiple

stored

procedure

address

spaces

are

initiated,

and

each

address

space

has

its

own

JVM.

Multiple

invocations

might

be

directed

to

multiple

address

spaces.

v

By

default,

on

z/OS

systems,

static

variables

are

reset

whenever

the

JVM

goes

through

a

reset

cycle.

The

default

number

of

stored

procedure

invocations

or

user-defined

function

references

before

static

variables

are

reset

is

256.

You

can

change

this

value

for

the

WLM

address

space.

However,

the

routine

has

no

control

over

this

value.

In

certain

cases,

you

need

to

declare

variables

as

static

and

non-final.

In

those

cases,

you

can

use

one

of

the

following

techniques

to

make

your

routines

work

182

Application

Programming

Guide

and

Reference

for

Java™

|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

correctly

with

static

variables.

For

the

JVM

information

that

is

discussed

in

these

descriptions,

see

Persistent

Reusable

Java

Virtual

Machine

User's

Guide.

Static

variable

technique

1

(simpler):

Set

up

the

JVM

to

load

classes

as

shareable

application

classes.

This

happens

automatically

for

classes

that

are

in

the

CLASSPATH,

and

for

classes

that

are

loaded

from

an

installed

JAR.

In

this

case,

static

variables

in

Java

routines

are

stored

in

the

application-class

system

heap,

and

might

be

impacted

by

JVM

resets.

The

application-class

system

heap

is

a

segregated

part

of

the

system

heap,

and

contains

shareable

application-class

objects

that

persist

for

the

lifetime

of

the

JVM.

To

determine

whether

the

values

of

static

data

in

a

routine

have

persisted

across

routine

invocations,

define

a

static

boolean

variable

in

the

class

that

contains

the

routine.

Initially

set

the

variable

to

false,

and

then

set

it

to

true

when

you

set

the

value

of

static

data.

Check

the

value

of

the

boolean

variable

at

the

beginning

of

the

routine.

If

the

value

is

true,

the

static

data

has

persisted.

Otherwise,

the

data

values

need

to

be

set

again.

With

this

technique,

static

data

values

are

not

set

for

most

routine

invocations,

but

are

set

more

than

once

during

the

lifetime

of

the

JVM.

Also,

with

this

technique,

it

is

not

a

problem

for

a

routine

to

execute

on

different

JVMs

for

different

invocations.

Static

variable

technique

2

(more

complex):

Set

up

the

JVM

to

load

classes

as

trusted

middleware

classes.

These

classes

go

on

the

middleware

heap.

The

middleware

heap

contains

objects

that

persist

across

JVM

resets.

During

A

JVM

reset,

tidy-up

and

reinitialize

methods

can

be

used

to

reset

the

classes

to

a

known

initialization

state

ready

for

their

next

use.

The

advantage

of

this

technique

is

that

a

class

can

be

aware

of

the

reset

events

and

is

not

subject

to

the

default

reinitialization

of

static

variables

when

the

JVM

is

reset.

The

class

must

manage

its

own

static

data.

In

addition,

trusted

middleware

can

perform

some

operations

that

shareable

application

classes

cannot.

The

disadvantages

of

this

technique

are:

v

This

technique

does

not

address

the

case

in

which

initialization

occurs

in

one

JVM

and

use

occurs

in

another.

v

A

trusted

class

cannot

be

stored

in

an

installed

JAR.

v

Errors

in

trusted

middleware

classes

can

be

hard

to

diagnose.

v

Because

trusted

middleware

classes

can

be

more

powerful

than

application

classes,

errors

in

their

coding

can

cause

larger

problems

than

errors

in

application

classes.

To

make

a

class

a

trusted

middleware

class,

specify

the

directory

or

JAR

that

contains

that

class

in

the

TMSUFFIX

environment

variable

in

the

JAVAENV

data

set,

but

not

in

the

CLASSPATH.

See

“Setting

the

run-time

environment

for

interpreted

Java

stored

procedures”

on

page

170.

Writing

a

Java

stored

procedure

to

return

result

sets

Your

stored

procedure

can

return

multiple

query

result

sets

to

a

client

program

if

the

following

conditions

are

satisfied:

v

The

client

supports

the

DRDA

code

points

that

are

used

to

return

query

result

sets.

v

The

value

of

DYNAMIC

RESULT

SETS

in

the

stored

procedure

definition

is

greater

than

0.

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

183

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

For

each

result

set

you

want

to

be

returned,

your

Java

stored

procedure

must

perform

the

following

actions:

v

For

each

result

set,

include

an

object

of

type

java.sql.ResultSet[]

or

an

array

of

an

SQLJ

iterator

class

in

the

parameter

list

for

the

stored

procedure

method.

If

the

stored

procedure

definition

includes

a

method

signature,

for

each

result

set,

include

java.sql.ResultSet[]

or

the

fully-qualified

name

of

an

array

of

a

class

that

is

declared

as

an

SQLJ

iterator

in

the

method

signature.

These

result

set

parameters

must

be

the

last

parameters

in

the

parameter

list

or

method

signature.

Do

not

include

a

java.sql.ResultSet

array

or

an

iterator

array

in

the

SQL

parameter

list

of

the

stored

procedure

definition.

v

Execute

a

SELECT

statement

to

obtain

the

contents

of

the

result

set.

v

Retrieve

any

rows

that

you

do

not

want

to

return

to

the

client.

v

Assign

the

contents

of

the

result

set

to

element

0

of

the

java.sql.ResultSet[]

object

or

array

of

an

SQLJ

iterator

class

that

you

declared

in

step

184.

v

Do

not

close

the

ResultSet,

the

statement

that

generated

the

ResultSet,

or

the

connection

that

is

associated

with

the

statement

that

generated

the

ResultSet.

DB2

does

not

return

result

sets

for

ResultSets

that

are

closed

before

the

stored

procedure

terminates.

Figure

62

shows

an

example

of

a

Java

stored

procedure

that

uses

an

SQLJ

iterator

to

retrieve

a

result

set.

Notes

to

Figure

62:

�1�

This

SQLJ

clause

declares

the

iterator

named

NameSal,

which

is

used

to

retrieve

the

rows

that

will

be

returned

to

the

stored

procedure

caller

in

a

result

set.

�2�

The

declaration

for

the

stored

procedure

method

contains

declarations

for

a

single

passed

parameter,

followed

by

the

declaration

for

the

result

set

object.

package

s1;

import

sqlj.runtime.*;

import

java.sql.*;

import

java.math.*;

#sql

iterator

NameSal(String

LastName,

BigDecimal

Salary);

�1�

public

class

S1Sal

{

public

static

void

getSals(BigDecimal[]

AvgSalParm,

java.sql.ResultSet[]

rs)

�2�

throws

SQLException

{

NameSal

iter1;

try

{

#sql

iter1

=

{SELECT

LASTNAME,

SALARY

FROM

EMP

�3�

WHERE

SALARY>0

ORDER

BY

SALARY

DESC};

#sql

{SELECT

AVG(SALARY)

INTO

:(AvgSalParm[0])

FROM

EMP};

�4�

}

catch

(SQLException

e)

{

System.out.println("SQLCODE

returned:

"

+

e.getErrorCode());

throw(e);

}

rs[0]

=

iter1.getResultSet();

�5�

}

}

Figure

62.

Java

stored

procedure

that

returns

a

result

set

184

Application

Programming

Guide

and

Reference

for

Java™

�3�

This

SQLJ

clause

executes

the

SELECT

to

obtain

the

rows

for

the

result

set,

constructs

an

iterator

object

that

contains

those

rows,

and

assigns

the

iterator

object

to

variable

iter1.

�4�

This

SQLJ

clause

retrieves

a

value

into

the

parameter

that

is

returned

to

the

stored

procedure

caller.

�5�

This

statement

uses

the

getResultSet

method

to

assign

the

contents

of

the

iterator

to

the

result

set

that

is

returned

to

the

caller.

Testing

a

Java

routine

Before

you

invoke

your

Java

routines

from

SQL

applications,

it

is

a

good

idea

to

run

the

routines

as

stand-alone

programs,

which

are

easier

to

debug.

A

Java

program

that

runs

as

a

routine

requires

only

a

DB2

package.

However,

before

you

can

run

the

program

as

a

stand-alone

program,

you

need

to

bind

a

DB2

plan

for

it.

When

you

are

ready

to

test

your

programs

as

Java

routines,

include

a

JSPDEBUG

DD

statement

in

your

startup

procedure

for

the

stored

procedure

address

space.

This

DD

statement

specifies

a

data

set

to

which

DB2

writes

debug

information

as

the

Java

routines

execute.

Another

technique

that

you

can

use

for

debugging

is

to

include

System.out.println

and

System.err.println

calls

in

your

program

to

write

messages

to

the

STDERR

and

STDOUT

files.

If

you

are

using

the

Java

SDK

1.3.1,

you

need

to

include

JAVAOUT

and

JAVAERR

DD

statements

in

the

WLM

address

space

startup

procedure

to

indicate

the

z/OS

UNIX

System

Services

data

sets

to

which

STDOUT

and

STDERR

map.

The

DD

statements

look

like

these:

//JAVAOUT

DD

PATH=’/u/db281/javasp/JAVAOUT.TXT’,

//

PATHOPTS=(ORDWR,OCREAT,OAPPEND),

//

PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP,SIROTH,SIWOTH)

//JAVAERR

DD

PATH=’/u/db281/javasp/JAVAERR.TXT’,

//

PATHOPTS=(ORDWR,OCREAT,OAPPEND),

//

PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP,SIROTH,SIWOTH)

The

z/OS

UNIX

System

Services

directories

that

are

specified

by

the

PATH

parameter

must

exist

on

your

system.

The

PATHOPTS

options

OCREAT

and

OAPPEND

cause

the

files

that

are

specified

in

the

PATH

parameter

to

be

created

if

they

do

not

exist,

or

to

be

appended

if

they

exist.

If

you

are

using

the

Java

SDK

1.4.1

or

later,

and

you

do

not

include

JAVAOUT

and

JAVAERR

DD

statements

in

your

WLM

address

space

startup

procedure,

STDERR

output

is

written

to

the

directory

that

is

specified

by

the

WORK_DIR

parameter

in

the

JAVAENV

data

set.

If

no

WORK_DIR

parameter

is

specified,

output

goes

to

the

default

directory.

Chapter

5.

Creating

Java

stored

procedures

and

user-defined

functions

185

186

Application

Programming

Guide

and

Reference

for

Java™

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

DB2

UDB

for

z/OS

Java

programs

run

in

the

z/OS

UNIX

System

Services

environment.

The

following

topics

are

discussed:

v

“Preparing

JDBC

programs

for

execution”

v

“Preparing

SQLJ

programs

for

execution”

v

“Preparing

Java

routines

for

execution”

on

page

211

v

“Running

JDBC

and

SQLJ

programs”

on

page

216

Preparing

JDBC

programs

for

execution

Preparing

a

Java

program

that

contains

only

JDBC

methods

is

the

same

as

preparing

any

other

Java

program.

You

compile

the

program

using

the

javac

command.

No

precompile

or

bind

steps

are

required.

For

example,

to

prepare

the

Sample01.java

program

for

execution,

execute

this

command

from

the

/usr/lpp/db2810/

directory:

javac

Sample01.java

Preparing

SQLJ

programs

for

execution

After

you

write

an

SQLJ

application,

you

must

generate

an

executable

form

of

the

application.

The

process

that

you

use

for

program

preparation

is

independent

of

the

driver

that

you

use.

However,

the

commands

that

you

use

to

prepare

the

program

differ,

depending

on

whether

you

use

the

JDBC/SQLJ

Driver

for

OS/390

or

the

DB2

Universal

JDBC

Driver.

To

prepare

an

SQLJ

application

to

run

in

a

JVM,

and

with

the

JDBC/SQLJ

Driver

for

OS/390,

follow

these

steps:

1.

Translate

the

source

code

to

produce

generated

Java

source

code

and

serialized

profiles,

and

compile

the

generated

source

code

to

product

Java

bytecodes.

2.

Customize

the

serialized

profiles.

This

an

optional,

but

highly

recommended

step.

Some

SQLJ

programs

do

not

operate

correctly

unless

they

are

customized.

3.

Bind

plans

or

packages.

Figure

63

on

page

188

shows

the

steps

of

the

program

preparation

process

for

a

program

that

uses

the

JDBC/SQLJ

Driver

for

OS/390.

©

Copyright

IBM

Corp.

1998,

2004

187

|
|
|
|
|

To

prepare

an

SQLJ

application

to

run

in

a

JVM,

and

with

the

DB2

Universal

JDBC

Driver,

follow

these

steps:

1.

Translate

the

source

code

to

produce

generated

Java

source

code

and

serialized

profiles,

and

compile

the

generated

source

code

to

product

Java

bytecodes.

2.

Customize

the

serialized

profiles

to

produce

customized

serialized

profiles

and

DB2

packages.

Figure

64

on

page

189

shows

the

steps

of

the

program

preparation

process

for

a

program

that

uses

the

DB2

Universal

JDBC

Driver.

Serialized
profile

Customized
serialized

profile

Modified
source

Source
program

SQLJ
translator

Compile

Java
class
file

Customize

Four
DBRMs

Bind
package

Bind
plan Plan

Package

Figure

63.

The

SQLJ

program

preparation

process

for

the

JDBC/SQLJ

Driver

for

OS/390

188

Application

Programming

Guide

and

Reference

for

Java™

This

topic

discusses

each

of

those

steps.

Translating

and

compiling

SQLJ

source

code

The

first

steps

in

preparing

an

executable

SQLJ

program

are

to

use

the

SQLJ

translator

to

generate

a

Java

source

program,

compile

the

Java

source

program,

and

produce

zero

or

more

serialized

profiles.

You

issue

the

sqlj

command

from

the

z/OS

UNIX

System

Services

command

line

to

invoke

the

DB2

UDB

for

z/OS

SQLJ

translator.

The

SQLJ

translator

runs

without

connecting

to

DB2.

The

form

of

the

sqlj

command

depends

on

the

driver

that

you

are

using.

sqlj

command

for

the

DB2

Universal

JDBC

Driver

To

translate

and

optionally

compile

source

code

for

an

SQLJ

application

that

runs

under

the

DB2

Universal

JDBC

Driver,

execute

the

following

form

of

the

sqlj

command

on

the

z/OS

UNIX

System

Services

command

line.

sqlj

syntax:

Serialized
profile

Customized
serialized

profile

Modified
source

Source
program

SQLJ
translator

Compile

Java
class
file

Customize

Four
packages

Figure

64.

The

SQLJ

program

preparation

process

for

the

DB2

Universal

JDBC

Driver

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

189

|
|
|
|

|
|

��

sqlj

-help

-dir=directory

-d=directory

-props=properties-file

�

�

-compile=true

-compile=false

-linemap=NO

-linemap=YES

-smap=NO

-smap=YES

-encoding=encoding

-ser2class

�

�

-status

-version

-C-help

�

(1)

-Ccompiler-option

�

-JJVM-option

�

�

�

SQLJ-source-file-name

��

Notes:

1 The

-C-classpath

and

-C-sourcepath

options

are

used

by

the

SQLJ

translator

as

well

as

by

the

Java

compiler.

sqlj

parameter

descriptions:

-help

Specifies

that

the

SQLJ

translator

describes

each

of

the

options

that

the

translator

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

-dir=directory

Specifies

the

name

of

the

directory

into

which

SQLJ

puts

.java

files

that

are

generated

by

the

translator.

The

default

directory

is

the

directory

that

contains

the

SQLJ

source

files.

The

translator

uses

the

directory

structure

of

the

SQLJ

source

files

when

it

puts

the

generated

files

in

directories.

For

example,

suppose

that

you

want

the

translator

to

process

two

files:

v

file1.sqlj,

which

is

not

in

a

Java

package

v

file2.sqlj,

which

is

in

Java

package

sqlj.test

Also

suppose

that

you

specify

the

parameter

-dir=/src

when

you

invoke

the

translator.

The

translator

puts

the

Java

source

file

for

file1.sqlj

in

directory

/src

and

puts

the

Java

source

file

for

file2.sqlj

in

directory

/src/sqlj/test.

-d=directory

Specifies

the

name

of

the

directory

into

which

SQLJ

puts

the

binary

files

that

are

generated

by

the

translator.

These

files

include:

v

The

serialized

profile

files

(.ser

files)

v

If

the

sqlj

command

invokes

the

Java

compiler,

the

class

files

that

are

generated

by

the

compiler

(.class

files)

The

default

directory

is

the

directory

that

contains

the

SQLJ

source

files.

The

translator

uses

the

directory

structure

of

the

SQLJ

source

files

when

it

puts

the

generated

files

in

directories.

For

example,

suppose

that

you

want

the

translator

to

process

two

files:

190

Application

Programming

Guide

and

Reference

for

Java™

|||||||||||||||||||||||||||||||||
|

|
|||
|

|
|||
|

|
||||||||||||||||

|

|

||
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

v

file1.sqlj,

which

is

not

in

a

Java

package

v

file2.sqlj,

which

is

in

Java

package

sqlj.test

Also

suppose

that

you

specify

the

parameter

-d=/src

when

you

invoke

the

translator.

The

translator

puts

the

serialized

profiles

for

file1.sqlj

in

directory

/src

and

puts

the

serialized

profiles

for

file2.sqlj

in

directory

/src/sqlj/test.

-props=properties-file

Specifies

the

name

of

a

file

from

which

the

SQLJ

translator

is

to

obtain

a

list

of

options.

-compile=true|false

Specifies

whether

the

SQLJ

translator

compiles

the

generated

Java

source

into

bytecodes.

true

The

translator

compiles

the

generated

Java

source

code.

This

is

the

default.

false

The

translator

does

not

compile

the

generated

Java

source

code.

-linemap=no|yes

Specifies

whether

line

numbers

in

Java

exceptions

match

line

numbers

in

the

SQLJ

source

file

(the

.sqlj

file),

or

line

numbers

in

the

Java

source

file

that

is

generated

by

the

SQLJ

translator

(the

.java

file).

no

Line

numbers

in

Java

exceptions

match

line

numbers

in

the

Java

source

file.

This

is

the

default.

yes

Line

numbers

in

Java

exceptions

match

line

numbers

in

the

SQLJ

source

file.

-smap=no|yes

Specifies

whether

the

SQLJ

translator

generates

a

source

map

(SMAP)

file

for

each

SQLJ

source

file.

An

SMAP

file

is

used

by

some

Java

language

debug

tools.

This

file

maps

lines

in

the

SQLJ

source

file

to

lines

in

the

Java

source

file

that

is

generated

by

the

SQLJ

translator.

The

file

is

in

the

Unicode

UTF-8

encoding

scheme.

Its

format

is

described

by

Original

Java

Specification

Request

(JSR)

45,

which

is

available

from

this

web

site:

http://www.jcp.org

no

Do

not

generated

SMAP

files.

This

is

the

default.

yes

Generate

SMAP

files.

An

SMAP

file

name

is

SQLJ-source-file-
name.java.smap.

The

SQLJ

translator

places

the

SMAP

file

in

the

same

directory

as

the

generated

Java

source

file.

-encoding=encoding-name

Specifies

the

encoding

of

the

source

file.

Examples

are

JIS

or

EUC.

If

this

option

is

not

specified,

the

default

converter

for

the

operating

system

is

used.

-ser2class

Specifies

that

the

the

SQLJ

translator

converts

.ser

files

to

.class

files.

-status

Specifies

that

the

the

SQLJ

translator

displays

status

messages

as

it

runs.

-version

Specifies

that

the

the

SQLJ

translator

displays

the

version

of

the

DB2

Universal

JDBC

Driver.

The

information

is

in

this

form:

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

191

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

||
|

|
|
|

|
|
|
|
|
|
|

|

||

|
|
|
|

|
|
|

|
|

|
|

|
|
|

IBM

SQLJ

xxxx.xxxx.xx

-C-help

Specifies

that

the

SQLJ

translator

displays

help

information

for

the

Java

compiler.

-Ccompiler-option

Specifies

a

valid

Java

compiler

option

that

begins

with

a

dash

(-).

Do

not

include

spaces

between

-C

and

the

compiler

option.

If

you

need

to

specify

multiple

compiler

options,

precede

each

compiler

option

with

-C.

For

example:

-C-g

-C-verbose

All

options

are

passed

to

the

Java

compiler

and

are

not

used

by

the

SQLJ

translator,

except

for

the

following

options:

-classpath

Specifies

the

user

class

path

that

is

to

be

used

by

the

SQLJ

translator

and

the

Java

compiler.

This

value

overrides

the

CLASSPATH

environment

variable.

-sourcepath

Specifies

the

source

code

path

that

the

SQLJ

translator

and

the

Java

compiler

search

for

class

or

interface

definitions.

The

SQLJ

translator

searches

for

.sqlj

and

.java

files

only

in

directories,

not

in

JAR

or

zip

files.

-JJVM-option

Specifies

an

option

that

is

to

be

passed

to

the

Java

virtual

machine

(JVM)

in

which

the

sqlj

command

runs.

The

option

must

be

a

valid

JVM

option

that

begins

with

a

dash

(-).

Do

not

include

spaces

between

-J

and

the

JVM

option.

If

you

need

to

specify

multiple

JVM

options,

precede

each

compiler

option

with

-J.

For

example:

-J-Xmx128m

-J-Xinitacsh512

SQLJ-source-file-name

Specifies

a

list

of

SQLJ

source

files

to

be

translated.

This

is

a

required

parameter.

All

SQLJ

source

file

names

must

have

the

extension

.sqlj.

sqlj

output:

For

each

source

file,

program-name.sqlj,

the

SQLJ

translator

produces

the

following

files:

v

The

generated

source

program

The

generated

source

file

is

named

program-name.java.

v

A

serialized

profile

file

for

each

connection

context

class

that

is

used

in

an

SQLJ

executable

clause

A

serialized

profile

name

is

of

the

following

form:

program-name_SJProfileIDNumber.ser

v

If

the

SQLJ

translator

invokes

the

Java

compiler,

the

class

files

that

the

compiler

generates.

sqlj

command

for

the

JDBC/SQLJ

Driver

for

OS/390

To

translate

and

optionally

compile

source

code

for

an

SQLJ

application

that

runs

under

the

JDBC/SQLJ

Driver

for

OS/390,

execute

the

following

form

of

the

sqlj

command

on

the

z/OS

UNIX

System

Services

command

line.

sqlj

syntax:

192

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|

��

sqlj

-help

-dir=directory

-d=directory

-props=properties-file

�

�

-compile=true

-compile=false

-warn=all

-warn=none

-warn=verbose

-warn=nonverbose

-warn=portable

-warn=nonportable

file-list

��

sqlj

parameter

descriptions:

-help

Specifies

that

the

SQLJ

translator

describes

each

of

the

options

that

the

translator

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

-dir=directory

Specifies

the

name

of

the

directory

into

which

SQLJ

puts

.java

files

that

are

generated

by

the

translator.

The

default

directory

is

the

directory

that

contains

the

SQLJ

source

files.

The

translator

uses

the

directory

structure

of

the

SQLJ

source

files

when

it

puts

the

generated

files

in

directories.

For

example,

suppose

that

you

want

the

translator

to

process

two

files:

v

file1.sqlj,

which

is

not

in

a

Java

package

v

file2.sqlj,

which

is

in

Java

package

sqlj.test

Also

suppose

that

you

specify

the

parameter

-dir=/src

when

you

invoke

the

translator.

The

translator

puts

the

Java

source

file

for

file1.sqlj

in

directory

/src

and

puts

the

Java

source

file

for

file2.sqlj

in

directory

/src/sqlj/test.

-d=directory

Specifies

the

name

of

the

directory

into

which

SQLJ

puts

the

binary

files

that

are

generated

by

the

translator.

These

files

include:

v

The

serialized

profile

files

(.ser

files)

v

If

the

sqlj

command

invokes

the

Java

compiler,

the

class

files

that

are

generated

by

the

compiler

(.class

files)

The

default

directory

is

the

directory

that

contains

the

SQLJ

source

files.

The

translator

uses

the

directory

structure

of

the

SQLJ

source

files

when

it

puts

the

generated

files

in

directories.

For

example,

suppose

that

you

want

the

translator

to

process

two

files:

v

file1.sqlj,

which

is

not

in

a

Java

package

v

file2.sqlj,

which

is

in

Java

package

sqlj.test

Also

suppose

that

you

specify

the

parameter

-d=/src

when

you

invoke

the

translator.

The

translator

puts

the

serialized

profiles

for

file1.sqlj

in

directory

/src

and

puts

the

serialized

profiles

for

file2.sqlj

in

directory

/src/sqlj/test.

-props=properties-file

Specifies

the

name

of

a

file

from

which

the

SQLJ

translator

is

to

obtain

a

list

of

options.

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

193

-compile=true|false

Specifies

whether

the

SQLJ

translator

compiles

the

generated

Java

source

into

bytecodes.

true

The

translator

compiles

the

generated

Java

source

code.

This

is

the

default.

false

The

translator

does

not

compile

the

generated

Java

source

code.

-warn=warning-level

Specifies

the

types

of

messages

that

the

SQLJ

translator

is

to

return.

The

meanings

of

the

warning

levels

are:

all

The

translator

displays

all

warnings

and

informational

messages.

This

is

the

default.

none

The

translator

displays

no

warnings

or

informational

messages.

verbose

The

translator

displays

informational

messages

about

the

semantic

analysis

process.

nonverbose

The

translator

displays

no

informational

messages

about

the

semantic

analysis

process.

portable

The

translator

displays

warning

messages

about

the

portability

of

SQLJ

clauses.

nonportable

The

translator

displays

no

warning

messages

about

the

portability

of

SQLJ

clauses.

file-list

Specifies

a

list

of

SQLJ

source

files

to

be

translated.

This

is

a

required

parameter.

All

SQLJ

source

file

names

must

have

the

extension

.sqlj.

sqlj

output:

For

each

source

file,

program-name.sqlj,

the

SQLJ

translator

produces

the

following

files:

v

The

generated

source

program

The

generated

source

file

is

named

program-name.java.

v

A

serialized

profile

file

for

each

connection

context

class

that

is

used

in

an

SQLJ

executable

clause

A

serialized

profile

name

is

of

the

following

form:

program-name_SJProfileIDNumber.ser

v

If

the

SQLJ

translator

invokes

the

Java

compiler,

the

class

files

that

the

compiler

generates.

Customizing

an

SQLJ

serialized

profile

After

you

use

the

SQLJ

translator

to

generate

serialized

profiles

for

an

SQLJ

program,

you

need

to

customize

each

serialized

profile.

The

command

that

you

use

and

the

output

that

you

receive

depends

on

the

driver

that

you

use.

Customizing

serialized

profiles

for

a

DB2

Universal

JDBC

Driver

Execute

the

db2sqljcustomize

command

on

the

z/OS

UNIX

System

Services

command

line

to

produce

a

customized

serialized

profile,

and

optionally,

to

produce

194

Application

Programming

Guide

and

Reference

for

Java™

|
|

DB2

packages

at

a

specified

data

source.

You

can

produce

the

customized

serialized

profile

and

DB2

packages

on

any

data

source

against

which

a

DB2

Universal

JDBC

Driver

runs.You

can

also

use

the

db2sqljcustomize

command

to

do

online

checking.

By

default,

db2sqljcustomize

binds

DB2

packages.

However,

you

can

disable

automatic

creation

of

packages

and

use

the

db2sqljbind

utility

to

bind

packages

later.

See

“Binding

the

packages

for

the

DB2

Universal

JDBC

Driver”

on

page

226

for

a

description

of

db2sqljbind.

Authorization:

To

execute

this

command,

you

must

use

a

privilege

set

of

the

process

that

includes

one

of

the

following

authorities:

v

SYSADM

authority

v

DBADM

authority

v

If

the

package

does

not

exist,

the

BINDADD

privilege,

and

one

of

the

following

privileges:

–

CREATEIN

privilege

–

PACKADM

authority

on

the

collection

or

on

all

collections
v

If

the

package

exists,

the

BIND

privilege

on

the

package

db2sqljcustomize

syntax:

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

195

��

db2sqljcustomize

-help

�

�

�

-url

jdbc:db2://server

/database

:port

:

property=value;

-user

user-ID

�

�

-password

password

-automaticbind

YES

-automaticbind

NO

-pkgversion

AUTO

-pkgversion

version-id

�

�

-bindoptions

"

options-string

"

-collection

collection-ID

-onlinecheck

YES

-onlinecheck

NO

�

�

-qualifier

qualifier-name

-rootpkgname

package-name-stem

-singlepkgname

package-name

-staticpositioned

NO

-staticpositioned

YES

�

�

�

-tracelevel

TRACE_SQLJ

-tracefile

file-name

,

-tracelevel

TRACE_NONE

TRACE_CONNECTION_CALLS

TRACE_STATEMENT_CALLS

TRACE_RESULT_SET_CALLS

TRACE_DRIVER_CONFIGURATION

TRACE_CONNECTS

TRACE_DRDA_FLOWS

TRACE_RESULT_SET_META_DATA

TRACE_PARAMETER_META_DATA

TRACE_DIAGNOSTICS

TRACE_SQLJ

TRACE_XA_CALLS

TRACE_ALL

�

�

�

serialized-profile-name

��

options-string:

196

Application

Programming

Guide

and

Reference

for

Java™

��

DB2-for-z/OS-options

DB2-for-Linux-UNIX-and-Windows-options

��

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

197

DB2

UDB

for

z/OS

options:

��

ACTION(REPLACE)

(1)

REPLVER(version-id)

ACTION(ADD)

DBPROTOCOL(DRDA)

DBPROTOCOL(PRIVATE)

DEGREE(1)

DEGREE(ANY)

�

�

EXPLAIN(NO)

EXPLAIN(YES)

IMMEDWRITE(NO)

IMMEDWRITE(PH1)

IMMEDWRITE(YES)

ISOLATION(RR)

ISOLATION(RS)

ISOLATION(CS)

ISOLATION(UR)

NOREOPT(VARS)

REOPT(VARS)

�

�

OPTHINT(hint-ID)

OWNER(authorization-ID)

�

,

PATH(

schema-name

)

USER

�

�

QUALIFIER(qualifier-name)

RELEASE(COMMIT)

RELEASE(DEALLOCATE)

SQLERROR(NOPACKAGE)

SQLERROR(CONTINUE)

�

�

VALIDATE(RUN)

VALIDATE(BIND)

��

Notes:

1 These

options

can

be

specified

in

any

order.

198

Application

Programming

Guide

and

Reference

for

Java™

DB2

UDB

for

Linux,

UNIX

and

Windows

options

��

(1)

BLOCKING

UNAMBIG

BLOCKING

ALL

BLOCKING

NO

DEGREE

1

DEGREE

ANY

EXPLAIN

NO

EXPLAIN

YES

EXPLSNAP

NO

EXPLSNAP

ALL

EXPLSNAP

YES

�

�

FEDERATED

NO

FEDERATED

YES

FUNCPATH

schema-name

INSERT

DEF

INSERT

BUF

ISOLATION

CS

ISOLATION

RR

ISOLATION

RS

ISOLATION

UR

�

�

OWNER

authorization-ID

QUALIFIER

qualifier-name

QUERYOPT

optimization-level

�

�

SQLERROR

NOPACKAGE

SQLERROR

CONTINUE

SQLWARN

YES

SQLWARN

NO

STATICREADONLY

NO

STATICREADONLY

YES

VALIDATE

RUN

VALIDATE

BIND

��

Notes:

1 These

options

can

be

specified

in

any

order.

db2sqljcustomize

parameter

descriptions:

-help

Specifies

that

the

SQLJ

customizer

describes

each

of

the

options

that

the

customizer

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

-url

Specifies

the

URL

for

the

data

source

for

which

the

profile

is

to

be

customized.

A

connection

is

established

to

the

data

source

that

this

URL

represents

if

the

-automaticbind

or

-onlinecheck

option

is

specified

as

YES

or

defaults

to

YES.

The

variable

parts

of

the

-url

value

are:

server

The

domain

name

or

IP

address

of

the

MVS

system

on

which

the

DB2

subsystem

resides.

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

DB2

subsystem.

The

default

is

446.

database

A

name

for

the

database

server

for

which

the

profile

is

to

be

customized.

If

the

connection

is

to

a

DB2

for

z/OS

server,

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

property=value;

A

property

for

the

JDBC

connection.

For

the

definitions

of

these

properties,

see

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106.

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

199

-user

user-ID

Specifies

the

user

ID

to

be

used

to

connect

to

the

data

source

for

online

checking

or

binding

a

package.

You

must

specify

this

value

if

you

specify

-url.

-password

password

Specifies

the

password

to

be

used

to

connect

to

the

data

source

for

online

checking

or

binding

a

package.

You

must

specify

this

value

if

you

specify

-url.

-automaticbind

YES|NO

Specifies

whether

the

customizer

binds

DB2

packages

at

the

data

source

that

is

specified

by

the

-url

parameter.

The

default

is

YES.

The

number

of

packages

and

the

isolation

levels

of

those

packages

are

controlled

by

the

-rootpkgname

and

-singlepkgname

options.

Before

the

bind

operation

can

work,

the

following

conditions

need

to

be

met:

v

TCP/IP

and

DRDA

must

be

installed

at

the

target

data

source.

v

Valid

-url,

-username,

and

-password

values

must

be

specified.

v

The

-username

value

must

have

authorization

to

bind

a

package

at

the

target

data

source.

See

the

Authorization

topic

under

BIND

PACKAGE

Chapter

2

of

DB2

Command

Reference

for

the

authorization

that

is

needed

to

bind

a

package

on

DB2

UDB

for

z/OS.

-pkgversion

AUTO|version-id

Specifies

the

package

version

that

is

to

be

used

when

packages

are

bound

at

the

server

for

the

serialized

profile

that

is

being

customized.

db2sqljcustomize

stores

the

version

ID

in

the

serialized

profile

and

in

the

DB2

package.

Run-time

version

verification

is

based

on

the

consistency

token,

not

the

version

name.

To

automatically

generate

a

version

name

that

is

based

on

the

consistency

token,

specify

-pkgversion

AUTO.

The

default

is

that

there

is

no

version.

-bindoptions

options-string

Specifies

a

list

of

options,

separated

by

spaces.

These

options

have

the

same

function

as

DB2

precompile

and

bind

options

with

the

same

names.

If

you

are

preparing

your

program

to

run

on

a

DB2

UDB

for

z/OS

system,

specify

DB2

UDB

for

z/OS

options.

If

you

are

preparing

your

program

to

run

on

a

DB2

UDB

for

Linux,

UNIX

and

Windows

system,

specify

DB2

UDB

for

Linux,

UNIX

and

Windows

options.

Notes

on

bind

options:

v

Specify

ISOLATION

only

if

you

also

specify

the

-singlepkgname

option.

Important:

Specify

only

those

program

preparation

options

that

are

appropriate

for

the

data

source

at

which

you

are

binding

a

package.

Some

values

and

defaults

for

the

DB2

Universal

JDBC

Driver

are

different

from

the

values

and

defaults

for

DB2.

Check

the

preparation

options

under

“Customizing

serialized

profiles

for

a

DB2

Universal

JDBC

Driver”

on

page

194

to

determine

which

options

you

can

use.

For

information

on

the

meanings

of

DB2

UDB

for

z/OS

bind

options,

see

DB2

Command

Reference.

For

information

on

the

VERSION

precompile

option,

see

DB2

Application

Programming

and

SQL

Guide.

For

information

on

precompiler

or

bind

options

for

DB2

UDB

for

Linux,

UNIX

and

Windows,

see

DB2

Universal

Database

Command

Reference.

-collection

collection-ID

The

qualifier

for

the

packages

that

db2sqljcustomize

binds.

db2sqljcustomize

stores

this

value

in

the

customized

serialied

profile,

and

it

is

used

when

the

200

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|
|
|

|

associated

packages

are

bound.

If

you

do

not

specify

this

parameter,

db2sqljcustomize

uses

a

collection

ID

of

NULLID.

-onlinecheck

YES|NO

Specifies

whether

online

checking

of

data

types

in

the

SQLJ

program

is

to

be

performed.

The

-url

option

determines

the

data

source

that

is

to

be

used

for

online

checking.

The

default

is

YES

if

the

-url

parameter

is

specified.

Otherwise,

the

default

is

NO.

-qualifier

qualifier-name

Specifies

the

qualifier

that

is

to

be

used

for

unqualified

objects

in

the

SQLJ

program

during

online

checking.

This

value

is

not

used

as

the

qualifier

when

the

packages

are

bound.

-rootpkgname|-singlepkgname

Specifies

the

names

for

the

packages

that

are

associated

with

the

program.

If

-automaticbind

is

NO,

these

package

names

are

used

when

db2sqljbind

runs.

The

meanings

of

the

parameters

are:

-rootpkgname

package-name-stem

Specifies

that

the

customizer

creates

four

packages,

one

for

each

of

the

four

DB2

isolation

levels.

The

names

for

the

four

packages

are:

package-name-stem1

For

isolation

level

UR

package-name-stem2

For

isolation

level

CS

package-name-stem3

For

isolation

level

RS

package-name-stem4

For

isolation

level

RR

package-name-stem

must

be

an

alphanumeric

string

of

seven

or

fewer

bytes.

-singlepkgname

package-name

Specifies

that

the

customizer

creates

one

package,

with

the

name

package-name.

If

you

specify

this

option,

your

program

can

run

at

only

one

isolation

level.

You

specify

the

isolation

level

for

the

package

by

specifying

the

ISOLATION

option

in

the

-bindoptions

options

string.

package-name

must

be

an

alphanumeric

string

of

eight

characters

or

less.

Using

the

-singlepkgname

option

is

not

recommended.

If

you

do

not

specify

-rootpkgname

or

-singlepkgname,

db2sqljcustomize

generates

four

package

names

that

are

based

on

the

serialized

profile

name.

A

serialized

profile

name

is

of

the

following

form:

program-name_SJProfileIDNumber.ser

The

four

generated

package

names

are

eight

bytes

or

fewer

in

length,

and

are

of

the

following

form:

Bytes-from-program-nameIDNumberPkgIsolation

Table

45

shows

the

parts

of

a

generated

package

name

and

the

number

of

bytes

for

each

part.

Table

45.

Parts

of

a

package

name

that

is

generated

by

db2sqljcustomize

Package

name

part

Number

of

bytes

Value

Bytes-from-program-name

m=min(Length(program-name),

8–1–Length(IDNumber))

First

m

bytes

of

program-name,

in

uppercase

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

201

Table

45.

Parts

of

a

package

name

that

is

generated

by

db2sqljcustomize

(continued)

Package

name

part

Number

of

bytes

Value

IDNumber

Length(IDNumber)

IDNumber

PkgIsolation

1

1,

2,

3,

or

4.

This

value

represents

the

transaction

isolation

level

for

the

package.

See

Table

46.

Table

46

shows

the

values

of

the

PkgIsolation

portion

of

a

package

name

that

is

generated

by

db2sqljcustomize.

Table

46.

PkgIsolation

values

and

associated

isolation

levels

PkgNumber

value

Isolation

level

for

package

1

Uncommitted

read

(UR)

2

Cursor

stability

(CS)

3

Read

stability

(RS)

4

Repeatable

read

(RR)

Example:

Suppose

that

a

profile

name

is

ThisIsMyProg_SJProfile111.ser.

Bytes-from-program-name

is

the

first

four

bytes

of

ThisIsMyProg,

translated

to

uppercase,

or

THIS.

IDNumber

is

111.

Therefore,

the

four

package

names

are:

THIS1111

THIS1112

THIS1113

THIS1114

Example:

Suppose

that

a

profile

name

is

A_SJProfile0.ser.

Bytes-from-program-name

is

A.

IDNumber

is

0.

Therefore,

the

four

package

names

are:

A01

A02

A03

A04

Letting

db2sqljcustomize

generate

package

names

is

not

recommended.

If

any

generated

package

names

are

the

same

as

the

names

of

existing

packages,

db2sqljcustomize

overwrites

the

existing

packages.

To

ensure

uniqueness

of

package

names,

specify

-rootpkgname.

-staticpositioned

NO|YES

For

iterators

that

are

declared

in

the

same

source

file

as

positioned

UPDATE

statements

that

use

the

iterators,

specifies

whether

the

positioned

UPDATEs

are

executed

as

statically

bound

statements.

The

default

is

NO.

NO

means

that

the

positioned

UPDATEs

are

executed

as

dynamically

prepared

statements.

-tracefile

file-name

Enables

tracing

and

identifies

the

output

file

for

trace

information.

This

option

should

be

specified

only

under

the

direction

of

your

IBM

service

representative.

-tracelevel

If

-tracefile

is

specified,

indicates

what

to

trace

while

db2sqljcustomize

runs.

The

default

is

TRACE_SQLJ.

This

option

should

be

specified

only

under

the

direction

of

your

IBM

service

representative.

202

Application

Programming

Guide

and

Reference

for

Java™

serialized-profile-name

Specifies

the

name

of

one

or

more

serialized

profiles

that

are

to

be

customized.

A

serialized

profile

name

is

of

the

following

form:

program-name_SJProfileIDNumber.ser

program-name

is

the

name

of

the

SQLJ

source

program,

without

the

extension

.sqlj.

n

is

an

integer

between

0

and

m-1,

where

m

is

the

number

of

serialized

profiles

that

the

SQLJ

translator

generated

from

the

SQLJ

source

program.

If

you

specify

more

than

one

serialized

profile

name,

and

if

you

specify

or

use

the

default

value

of

-automaticbind

YES,

db2sqljcustomize

binds

a

single

DB2

package

from

the

profiles.

When

you

use

db2sqljcustomize

to

create

a

single

DB2

package

from

multiple

serialized

profiles,

you

must

also

specify

the

-rootpkgname

or

-singlepkgname

option.

If

you

specify

more

than

one

serialized

profile

name,

and

you

specify

-automaticbind

NO,

if

you

want

to

bind

the

serialized

profiles

into

a

single

DB2

package

when

you

run

db2sqljbind,

you

need

to

specify

the

same

list

of

serialized

profile

names,

in

the

same

order,

in

db2sqljcustomize

and

db2sqljbind.

db2sqljcustomize

output:

When

db2sqljcustomize

runs,

it

creates

a

customized

serialized

profile.

It

also

creates

DB2

packages,

if

the

automaticBind

value

is

YES.

Customizing

serialized

profiles

for

the

JDBC/SQLJ

Driver

for

OS/390

To

produce

standard

DB2

UDB

for

z/OS

DBRMs

and

a

serialized

profile

that

is

customized

for

DB2

UDB

for

z/OS,

execute

the

db2profc

command

on

the

z/OS

UNIX

System

Services

command

line.

db2profc

Syntax:

��

db2profc

-help

-version

-date=ISO

-date=USA

-date=EUR

-date=JIS

-time=ISO

-time=USA

-time=EUR

-time=JIS

-sql=ALL

-sql=DB2

�

�

-online=location-name

-inform=YES

-validate=CUSTOMIZE

-schema=authorization-ID

-inform=NO

-validate=RUN

�

�

-staticPositioned=NO

-staticPositioned=YES

-pgmversion=AUTO

-pgmversion=version-ID

-pgmname=DBRM-member-name

serialized-profile-name

��

db2profc

parameter

descriptions:

-help

Specifies

that

the

SQLJ

customizer

describes

each

of

the

options

that

the

customizer

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

203

-version

Specifies

that

the

SQLJ

customizer

returns

the

version

of

the

SQLJ

customizer.

If

any

other

options

are

specified

with

-version,

they

are

ignored.

-date=ISO|USA|EUR|JIS

Specifies

that

date

values

that

you

retrieve

from

an

SQL

table

should

always

be

in

a

particular

format,

regardless

of

the

format

that

is

specified

as

the

location

default.

For

a

description

of

these

formats,

see

Chapter

2

of

DB2

SQL

Reference.

The

default

is

ISO.

-time=ISO|USA|EUR|JIS

Specifies

that

time

values

that

you

retrieve

from

an

SQL

table

should

always

be

in

a

particular

format,

regardless

of

the

format

that

is

specified

as

the

location

default.

For

a

description

of

these

formats,

see

Chapter

2

of

DB2

SQL

Reference.

The

default

is

ISO.

-sql=ALL|DB2

Indicates

whether

the

source

program

contains

SQL

statements

other

than

those

that

DB2

UDB

for

z/OS

recognizes.

ALL,

which

is

the

default,

indicates

that

the

SQL

statements

in

the

program

are

not

necessarily

for

DB2

UDB

for

z/OS.

Use

ALL

for

application

programs

whose

SQL

statements

must

execute

on

a

server

other

that

DB2

UDB

for

z/OS.

DB2

indicates

that

the

DB2

bind

process

should

interpret

SQL

statements

and

check

syntax

for

use

by

DB2

UDB

for

z/OS.

Use

DB2

when

the

database

server

is

DB2

UDB

for

z/OS.

-online=location-name

Specifies

that

the

SQLJ

customizer

connects

to

DB2

to

do

online

checking

of

data

types

in

the

SQLJ

program.

location-name

is

the

location

name

that

corresponds

to

a

DB2

subsystem

to

which

the

SQLJ

customizer

connects

to

do

online

checking.

The

name

of

the

DB2

subsystem

is

specified

in

the

DB2SQLJSSID

keyword

in

the

SQLJ

run-time

properties

file.

Before

you

can

do

online

checking,

your

SQLJ/JDBC

environment

must

include

a

JDBC

profile.

See

“Customizing

the

JDBC

profile

(optional)”

on

page

240

for

information.

Online

checking

is

optional.

However,

to

get

the

best

mapping

of

Java

data

types

to

DB2

data

types,

it

is

recommended

that

you

request

online

checking.

-schema=authorization-ID

Specifies

the

authorization

ID

that

the

SQLJ

customizer

uses

to

qualify

unqualified

DB2

object

names

in

the

SQLJ

program

during

online

checking.

-inform=YES|NO

Indicates

whether

informational

messages

are

generated

when

online

checking

is

bypassed.

The

default

is

YES.

-validate=CUSTOMIZE|RUN

Indicates

whether

customization

terminates

when

online

checking

detects

errors

in

the

application.

CUSTOMIZE

causes

customization

to

terminate

when

online

checking

detects

errors.

RUN

causes

customization

to

continue

when

online

checking

detects

errors.

RUN

should

be

used

if

tables

that

are

used

by

the

application

do

not

exist

at

customization

time.

The

default

is

CUSTOMIZE.

-staticPositioned=NO|YES

Indicates

whether

the

DB2

processes

positioned

UPDATE

or

DELETE

statements

as

static

SQL

statements.

204

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|

NO,

which

is

the

default,

DB2

processes

positioned

UPDATE

or

DELETE

statements

dynamically.

YES

indicates

that

DB2

processes

positioned

UPDATE

or

DELETE

statements

as

static

SQL

statements.

Specifying

YES

can

improve

the

performance

of

programs

that

contain

positioned

UPDATE

or

DELETE

statements.

However,

if

you

pass

iterators

as

variables

between

methods,

you

might

need

to

modify

applications

that

use

those

iterators.

See

“db2sqljcustomize

usage

notes”

for

details.

-pgmversion=version-ID|AUTO

Specifies

a

version

identifier

that

the

SQLJ

customizer

puts

in

the

DBRMs

and

in

the

customized

profile.

The

DB2

bind

process

puts

this

version

identifier

in

the

DB2

package.

This

parameter

has

the

same

function

as

the

DB2

precompiler

VERSION

option.

See

Part

5

of

DB2

Application

Programming

and

SQL

Guide

for

more

information

about

the

VERSION

option.

The

version

identifier

must

be

an

alphanumeric

string

of

64

bytes

or

less.

If

you

specify

AUTO,

the

SQLJ

customizer

generates

a

version

identifier

that

is

a

string

representation

of

the

current

time.

If

you

do

not

specify

the

pgmversion

parameter,

the

version

identifier

value

is

an

empty

string.

-pgmname=DBRM-name

Specifies

the

common

part

of

the

names

for

the

four

DBRMs

that

the

SQLJ

customizer

generates.

DBRM-name

must

be

seven

or

fewer

characters

in

length

and

must

conform

to

the

rules

for

naming

members

of

MVS

partitioned

data

sets.

See

“Binding

packages

or

plans

for

SQLJ

programs”

on

page

207

for

information

on

how

to

bind

each

of

the

DBRMs.

serialized-profile-name

Specifies

the

name

of

the

serialized

profile

that

is

to

be

customized.

A

serialized

profile

name

is

of

the

following

form:

program-name_SJProfileIDNumber.ser

db2profc

output:

When

db2profc

runs,

it

creates

four

DBRMs

and

customized

serialized

profiles.

The

customized

serialized

profiles

overwrite

the

serialized

profiles.

db2sqljcustomize

usage

notes

Online

checking

is

always

recommended

(db2profc

or

db2sqljcustomize):

It

is

highly

recommended

that

you

use

online

checking

when

you

customize

your

serialized

profiles.

Online

checking

determines

information

about

the

data

types

and

lengths

of

DB2

host

variables,

and

is

especially

important

for

the

following

items:

v

Predicates

with

java.lang.String

host

variables

and

CHAR

columns

Unlike

character

variables

in

other

host

languages,

Java

String

host

variables

are

not

declared

with

a

length

attribute.

To

optimize

a

query

properly

that

contains

character

host

variables,

DB2

needs

the

length

of

the

host

variables.

For

example,

suppose

that

a

query

has

a

predicate

in

which

a

String

host

variable

is

compared

to

a

CHAR

column,

and

an

index

is

defined

on

the

CHAR

column.

If

DB2

cannot

determine

the

length

of

the

host

variable,

it

might

do

a

table

space

scan

instead

of

an

index

scan.

Online

checking

avoids

this

problem

by

providing

the

lengths

of

the

corresponding

character

columns.

v

Predicates

with

java.lang.String

host

variables

and

GRAPHIC

columns

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

205

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

Without

online

checking,

DB2

might

issue

a

bind

error

(SQLCODE

-134)

when

it

encounters

a

predicate

in

which

a

String

host

variable

is

compared

to

a

GRAPHIC

column.

v

CHAR

columns

in

the

result

table

of

an

SQLJ

SELECT

statement

at

a

remote

server

(db2profc

only):

The

JDBC

driver

cannot

describe

a

SELECT

statement

that

is

run

at

a

remote

server.

Therefore,

without

online

checking,

the

driver

cannot

determine

the

exact

data

types

and

lengths

of

the

result

table

columns.

For

character

columns,

the

driver

assigns

a

data

type

and

length

of

VARCHAR(512).

Therefore,

if

you

do

not

perform

online

checking,

and

you

select

data

from

a

CHAR

column,

the

result

is

a

character

string

of

length

512,

which

is

not

the

desired

result.

v

Column

names

in

the

result

table

of

an

SQLJ

SELECT

statement

at

a

remote

server

(db2sqljcustomize

only):

Without

online

checking,

the

driver

cannot

determine

the

column

names

for

the

result

table

of

a

remote

SELECT.

Online

checking

restriction

(db2profc

only):

If

a

query

produces

an

intermediate

result

table,

the

customizer

cannot

do

online

checking

of

that

query

and

issues

a

warning

message.

Customizing

multiple

serialized

profiles

together

(db2sqljcustomize

only):

Multiple

serialized

profiles

can

be

customized

together

to

create

a

single

DB2

package.

If

you

do

this,

and

if

you

specify

-staticpostioned

YES,

any

positioned

UPDATE

or

DELETE

statement

that

references

a

cursor

that

is

declared

earlier

in

the

package

executes

statically,

even

if

the

UPDATE

or

DELETE

statement

is

in

a

different

source

file

from

the

cursor

declaration.

If

you

want

-staticpositioned

YES

behavior

when

your

program

consists

of

multiple

source

files,

you

need

to

order

the

profiles

in

the

db2sqljcustomize

command

to

cause

cursor

declarations

to

be

ahead

of

positioned

UPDATE

or

DELETE

statements

in

the

package.

To

do

that,

list

profiles

that

contain

SELECT

statements

that

assign

result

tables

to

iterators

before

profiles

that

contain

the

positioned

UPDATE

or

DELETE

statements

that

reference

those

iterators.

Using

a

customized

serialized

profile

at

one

data

source

that

was

customized

at

another

data

source

(db2sqljcustomize

only):

You

can

run

db2sqljcustomize

to

produce

a

customized

serialized

profile

for

an

SQLJ

program

at

one

data

source,

and

then

use

that

profile

at

another

data

source.

You

do

this

by

running

db2sqljbind

multiple

times

on

customized

serialized

profiles

that

you

created

by

running

db2sqljcustomize

once.

When

you

run

the

programs

at

these

data

sources,

the

DB2

objects

that

the

programs

access

must

be

identical

at

every

data

source.

For

example,

tables

at

all

data

sources

must

have

the

same

encoding

schemes

and

the

same

columns

with

the

same

data

types.

Using

the

-collection

parameter

(db2sqljcustomize

only):

db2sqljcustomize

stores

the

DB2

collection

name

in

each

customized

serialized

profile

that

it

produces.

When

an

SQLJ

program

is

executed,

the

driver

uses

the

collection

name

that

is

stored

in

the

customized

serialized

profile

to

search

for

packages

to

execute.

The

name

that

is

stored

in

the

customized

serialized

profile

is

determined

by

the

value

of

the

-collection

parameter.

Only

one

collection

ID

can

be

stored

in

the

serialized

profile.

However,

you

can

bind

the

same

serialized

profile

into

multiple

package

collections

by

specifying

the

COLLECTION

option

in

the

-bindoptions

parameter.

To

execute

a

package

that

is

in

a

collection

other

than

the

collection

that

is

specified

in

the

serialized

profile,

include

a

SET

CURRENT

PACKAGESET

statement

in

the

program.

206

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Using

the

VERSION

parameter

(for

db2sqljcustomize

only):

Use

the

VERSION

parameter

to

bind

two

or

more

versions

of

a

package

for

the

same

SQLJ

program

into

the

same

collection.

You

might

do

this

if

you

have

changed

an

SQLJ

source

program,

and

you

want

to

run

the

old

and

new

versions

of

the

program.

For

example,

if

you

have

an

SQLJ

program

that

has

been

running

on

the

JDBC/SQLJ

Driver

for

OS/390,

and

you

want

a

version

of

the

program

that

runs

on

the

DB2

Universal

JDBC

Driver,

as

well

as

the

existing

version,

you

need

to

follow

these

steps:

1.

Change

the

code

in

your

source

program

that

connects

to

the

data

source

to

point

to

the

new

driver.

2.

Translate

the

source

program

to

create

a

new

serialized

profile.

Ensure

that

you

do

not

overwrite

your

original

serialized

profile.

3.

Run

db2sqljcustomize

to

customize

the

serialized

profile

and

create

DB2

packages

with

the

same

package

names

and

in

the

same

collection

as

the

original

packages.

Do

this

by

using

the

same

values

for

-rootpkgname

and

-collection

when

you

bind

the

new

packages

that

you

used

when

you

created

the

original

packages.

Specify

the

VERSION

option

in

the

-bindoptions

parameter

to

put

a

version

ID

in

the

new

customized

serialized

profile

and

in

the

new

packages.

It

is

essential

that

you

specify

the

VERSION

option

when

you

perfom

this

step.

If

you

do

not,

you

overwrite

your

original

packages.

When

you

run

the

old

version

of

the

program

that

uses

the

DB2

UDB

for

z/OS,

DB2

loads

the

old

versions

of

the

packages.

When

you

run

the

new

version

of

the

program

that

uses

the

DB2

Universal

JDBC

Driver,

DB2

loads

the

new

versions

of

the

packages.

Binding

packages

or

plans

for

SQLJ

programs

After

you

run

one

of

the

SQLJ

customizers,

the

action

that

you

take

depends

on

which

customizer

you

used,

and

whether

you

bound

packages

using

the

customizer.

Binding

packages

after

running

db2sqljcustomize

Applications

that

run

with

the

DB2

Universal

JDBC

Driver

require

packages

but

no

plans.

If

the

db2sqljcustomize

-automaticbind

option

is

specified

as

YES

or

defaults

to

YES,

db2sqljcustomize

binds

packages

for

you

at

the

data

source

that

you

specify

in

the

-url

parameter.

However,

if

automaticBind

is

NO,

if

a

bind

fails

when

db2sqljcustomize

runs,

or

if

you

want

to

create

identical

packages

at

multiple

locations

for

the

same

serialized

profile,

you

can

use

the

db2sqljbind

utility

to

bind

packages.

db2sqljbind

syntax:

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

207

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

��

db2sqljbind

-help

�

-url

jdbc:db2://server

/database

:port

:

property=value;

�

�

-user

user-ID

-password

password

-bindoptions

"

options-string

"

�

�

-staticpositioned

NO

-staticpositioned

YES

�

�

�

-tracelevel

TRACE_SQLJ

-tracefile

file-name

,

-tracelevel

TRACE_NONE

TRACE_CONNECTION_CALLS

TRACE_STATEMENT_CALLS

TRACE_RESULT_SET_CALLS

TRACE_DRIVER_CONFIGURATION

TRACE_CONNECTS

TRACE_DRDA_FLOWS

TRACE_RESULT_SET_META_DATA

TRACE_PARAMETER_META_DATA

TRACE_DIAGNOSTICS

TRACE_SQLJ

TRACE_XA_CALLS

TRACE_ALL

�

�

�

serialized-profile-name

��

db2sqljbind

parameter

descriptions:

-help

Specifies

that

db2sqljbind

describes

each

of

the

options

that

it

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

-url

Specifies

the

URL

for

the

data

source

for

which

the

profile

is

to

be

customized.

This

URL

is

used

if

the

-automaticbind

or

-onlinecheck

option

is

YES.

The

variable

parts

of

the

-url

value

are:

server

The

domain

name

or

IP

address

of

the

MVS

system

on

which

the

DB2

subsystem

resides.

208

Application

Programming

Guide

and

Reference

for

Java™

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

DB2

subsystem.

The

default

is

446.

database

A

name

for

the

database

server

for

which

the

profile

is

to

be

customized.

If

the

connection

is

to

a

DB2

for

z/OS

server,

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

property=value;

A

property

for

the

JDBC

connection.

For

the

definitions

of

these

properties,

see

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106.

-user

user-ID

Specifies

the

user

ID

to

be

used

to

connect

to

the

data

source

for

binding

the

package.

-password

password

Specifies

the

password

to

be

used

to

connect

to

the

data

source

for

binding

the

package.

-bindoptions

options-string

Specifies

a

list

of

options,

separated

by

spaces.

These

options

have

the

same

function

as

DB2

precompile

and

bind

options

with

the

same

names.

If

you

are

preparing

your

program

to

run

on

a

DB2

UDB

for

z/OS

system,

specify

DB2

UDB

for

z/OS

options.

If

you

are

preparing

your

program

to

run

on

a

DB2

UDB

for

Linux,

UNIX

and

Windows

system,

specify

DB2

UDB

for

Linux,

UNIX

and

Windows

options.

Notes

on

bind

options:

v

Specify

VERSION

only

if

the

following

conditions

are

true:

–

If

you

are

binding

a

package

at

a

DB2

UDB

for

Linux,

UNIX

and

Windows

system,

the

system

is

at

Version

8

or

later.

–

You

rerun

the

translator

on

a

program

before

you

bind

the

associated

package

with

a

new

VERSION

value.

Important:

Specify

only

those

program

preparation

options

that

are

appropriate

for

the

data

source

at

which

you

are

binding

a

package.

Some

values

and

defaults

for

the

DB2

Universal

JDBC

Driver

are

different

from

the

values

and

defaults

for

DB2.

Check

the

preparation

options

in

the

previous

syntax

diagram

to

determine

which

options

you

can

use.

For

information

on

the

meanings

of

DB2

UDB

for

z/OS

bind

options,

see

DB2

Command

Reference.

For

information

on

the

VERSION

precompile

option,

see

DB2

Application

Programming

and

SQL

Guide.

For

information

on

precompiler

or

bind

options

for

DB2

UDB

for

Linux,

UNIX

and

Windows,

see

DB2

Universal

Database

Command

Reference.

-staticpositioned

NO|YES

For

iterators

that

are

declared

in

the

same

source

file

as

positioned

UPDATE

statements

that

use

the

iterators,

specifies

whether

the

positioned

UPDATEs

are

executed

as

statically

bound

statements.

The

default

is

NO.

NO

means

that

the

positioned

UPDATEs

are

executed

as

dynamically

prepared

statements.

This

value

must

be

the

same

as

the

-staticpositioned

value

for

the

previous

db2sqljcustomize

invocation

for

the

serialized

profile.

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

209

-tracefile

file-name

Enables

tracing

and

identifies

the

output

file

for

trace

information.

This

option

should

be

specified

only

under

the

direction

of

your

IBM

service

representative.

-tracelevel

If

-tracefile

is

specified,

indicates

what

to

trace

while

db2sqljcustomize

runs.

The

default

is

TRACE_SQLJ.

This

option

should

be

specified

only

under

the

direction

of

your

IBM

service

representative.

serialized-profile-name

Specifies

the

name

of

one

or

more

serialized

profiles

from

which

the

package

is

bound.

A

serialized

profile

name

is

of

the

following

form:

program-name_SJProfileIDNumber.ser

program-name

is

the

name

of

the

SQLJ

source

program,

without

the

extension

.sqlj.

n

is

an

integer

between

0

and

m-1,

where

m

is

the

number

of

serialized

profiles

that

the

SQLJ

translator

generated

from

the

SQLJ

source

program.

If

you

specify

more

than

one

serialized

profile

name

to

bind

a

single

DB2

package

from

several

serialized

profiles,

you

must

have

specified

the

same

serialized

profile

names,

in

the

same

order,

when

you

ran

db2sqljcustomize.

db2sqljbind

usage

notes:

Package

names

produced

by

db2sqljbind:

The

names

of

the

packages

that

are

created

by

db2sqljbind

are

the

names

that

you

specified

using

the-rootpkgname

or

-singlepkgname

parameter

when

you

ran

db2sqljcustomize.

If

you

did

not

specify

-rootpkgname

or

-singlepkgname,

the

package

names

are

the

first

seven

bytes

of

the

profile

name,

appended

with

the

isolation

level

character.

DYNAMICRULES

value

for

db2sqljbind:

The

DYNAMICRULES

bind

option

determines

a

number

of

run-time

attributes

for

a

DB2

package.

Two

of

those

attributes

are

the

authorization

ID

that

is

used

to

check

authorization,

and

the

qualifier

that

is

used

for

unqualified

objects.

To

ensure

the

correct

authorization

for

dynamically

executed

positioned

UPDATE

and

DELETE

statements

in

SQLJ

programs,

db2sqljbind

always

binds

the

DB2

packages

with

the

DYNAMICRULES(BIND)

option.

You

cannot

modify

this

option.

The

DYNAMICRULES(BIND)

option

causes

the

SET

CURRENT

SQLID

statement

to

have

no

impact

on

an

SQLJ

program,

because

those

statements

affect

only

dynamic

statements

that

are

bound

with

DYNAMICRULES

values

other

than

BIND.

With

DYNAMICRULES(BIND),

unqualified

table,

view,

index,

and

alias

names

in

dynamic

SQL

statements

are

implicitly

qualified

with

value

of

the

bind

option

QUALIFIER.

If

you

do

not

specify

QUALIFIER,

DB2

uses

the

authorization

ID

of

the

package

owner

as

the

implicit

qualifier.

If

this

behavior

is

not

suitable

for

your

program,

you

can

use

one

of

the

following

techniques

to

set

the

correct

qualifier:

v

Force

positioned

UDPATE

and

DELETE

statements

to

execute

statically.

You

can

use

the

-staticpositioned

YES

option

of

db2sqljcustomize

or

db2sqljbind

to

do

this

if

the

cursor

(iterator)

for

a

positioned

UPDATE

or

DELETE

statement

is

in

the

same

package

as

the

positioned

UPDATE

or

DELETE

statement.

See

“db2sqljcustomize

parameter

descriptions”

on

page

199

for

information

on

how

to

ensure

that

the

cursor

and

the

associated

statement

are

in

the

same

package.

v

Fully

qualify

DB2

table

names

in

positioned

UPDATE

and

positioned

DELETE

statements.

210

Application

Programming

Guide

and

Reference

for

Java™

Binding

packages

and

plans

after

running

db2profc

Binding

an

SQLJ

plan

after

running

db2profc

involves

these

steps:

1.

Bind

the

DBRMs

that

are

produced

by

the

SQLJ

customizer.

You

can

bind

the

DBRMs

directly

into

a

plan

or

bind

the

DBRMs

into

packages

and

then

bind

the

packages

into

a

plan.The

SQLJ

customizer

produces

four

DBRMs,

one

for

each

DB2

isolation

level

with

which

the

application

can

run.

Table

47

shows

the

name

of

each

DBRM

and

the

isolation

level

that

you

need

to

specify

when

you

bind

that

DBRM.

Table

47.

SQLJ

DBRMs

and

their

isolation

levels

DBRM

name

Bind

with

isolation

level

DBRM-name1

Uncommitted

read

(UR)

DBRM-name2

Cursor

stability

(CS)

DBRM-name3

Read

stability

(RS)

DBRM-name4

Repeatable

read

(RR)

2.

Bind

the

JDBC

packages

into

your

SQLJ

plan.

The

default

names

of

the

JDBC

packages

are:

v

DSNJDBC.DSNJDBC1

v

DSNJDBC.DSNJDBC2

v

DSNJDBC.DSNJDBC3

v

DSNJDBC.DSNJDBC4

3.

Ensure

that

the

JDBC

profile

is

in

a

directory

that

is

specified

in

the

CLASSPATH

environment

variable.

“Customizing

the

JDBC

profile

(optional)”

on

page

240

explains

how

to

create

the

JDBC

profile.

For

programs

that

include

both

statically

executed

and

dynamically

executed

statements,

such

as

programs

that

include

JDBC

methods

as

well

as

SQLJ

statements,

it

is

recommended

that

you

bind

your

SQLJ

plans

with

the

DYNAMICRULES(BIND)

option.

This

option

causes

DB2

to

use

uniform

authorization

and

object

qualification

rules

for

dynamic

and

static

SQL

statements.

For

more

information

on

binding

packages

and

plans,

see

Chapter

2

of

DB2

Command

Reference.

Preparing

Java

routines

for

execution

Java

routines

are

user-defined

functions

or

stored

procedures

that

are

written

in

Java.

Java

stored

procedures

or

user-defined

functions

are

referred

to

in

this

topic

as

interpreted

Java

routines.

This

topic

explains

how

to

prepare

Java

routines

for

execution.

See

“Preparing

SQLJ

programs

for

execution”

on

page

187

for

detailed

information

on

program

preparation

steps

that

are

common

to

all

Java

programs.

See

“Defining

a

Java

routine

to

DB2”

on

page

173

for

information

on

defining

Java

routines

and

JAR

files

to

DB2.

This

topic

outlines

the

program

preparation

steps

for

interpreted

Java

routines.

Those

steps

vary,

depending

on

whether

your

routine

contains

embedded

SQL

statements.

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

211

|
|
|
|
|
|

Preparing

interpreted

Java

routines

with

no

SQLJ

statements

If

the

program

contains

only

JDBC

methods

or

no

SQL

statements,

use

one

of

the

following

procedures

for

program

preparation.

Procedure

1:

Use

this

procedure

if

you

run

your

Java

routine

from

a

JAR

file.

This

procedure

is

recommended

over

procedure

2.

1.

Run

the

javac

command

to

compile

the

Java

program

to

produce

Java

bytecodes.

2.

Run

the

jar

command

to

collect

the

class

files

that

contain

the

methods

for

your

routine

into

a

JAR

file.

See

“Creating

JAR

files

for

Java

routines”

on

page

214

for

information

on

creating

the

JAR

file.

3.

Call

the

INSTALL_JAR

stored

procedure

to

define

the

JAR

file

to

DB2.

4.

If

another

user

defines

the

routine

to

DB2,

execute

the

SQL

GRANT

USAGE

ON

JAR

statement

to

grant

the

privilege

to

use

the

JAR

file

to

that

user.

5.

Execute

the

SQL

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

define

the

routine

to

DB2.

Specify

the

EXTERNAL

NAME

parameter

with

the

name

of

the

JAR

that

you

defined

to

DB2

in

step

3.

6.

Execute

the

SQL

GRANT

statement

to

grant

the

EXECUTE

privilege

on

the

routine

to

the

appropriate

users.

Procedure

2:

Use

this

procedure

if

you

do

not

run

your

Java

routine

from

a

JAR

file.

1.

Run

the

javac

command

to

compile

the

Java

program

to

produce

Java

bytecodes.

2.

Ensure

that

the

HFS

directory

that

contains

the

class

files

for

your

routine

is

in

the

CLASSPATH

for

the

WLM-established

stored

procedure

address

space.

You

specify

this

CLASSPATH

in

the

JAVAENV

data

set.

You

specify

the

JAVAENV

data

set

using

a

JAVAENV

DD

statement

in

the

startup

procedure

for

the

WLM-established

stored

procedure

address

space.

If

you

need

to

modify

the

CLASSPATH

environment

variable

in

the

JAVAENV

data

set

to

include

the

directory

for

the

Java

routine's

classes,

you

must

restart

the

WLM

address

space

to

make

it

use

the

modified

CLASSPATH.

3.

Execute

the

SQL

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

define

the

routine

to

DB2.

Specify

the

EXTERNAL

NAME

parameter

without

a

JAR

name.

4.

Execute

the

SQL

GRANT

statement

to

grant

the

EXECUTE

privilege

on

the

routine

to

the

appropriate

users.

Procedure

3:

Use

DB2

Development

Center

to

perform

all

of

the

program

preparation

steps.

Preparing

interpreted

Java

routines

with

SQLJ

statements

If

the

program

contains

embedded

SQL

statements,

use

one

of

the

following

procedures

for

program

preparation.

Procedure

1:

Use

this

procedure

if

you

run

your

Java

routine

from

a

JAR

file.

This

procedure

is

recommended

over

procedure

2.

1.

Run

the

sqlj

command

to

translate

the

source

code

to

produce

generated

Java

source

code

and

serialized

profiles,

and

to

compile

the

Java

program

to

produce

Java

bytecodes.

212

Application

Programming

Guide

and

Reference

for

Java™

2.

If

you

are

using

the

JDBC/SQLJ

Driver

for

OS/390,

run

the

db2profc

command

to

produce

serialized

profiles

that

are

customized

for

DB2

UDB

for

z/OS

and

DBRMs.

If

you

are

using

the

DB2

Universal

JDBC

Driver,

run

the

db2sqljcustomize

command

to

produce

serialized

profiles

that

are

customized

for

DB2

UDB

for

z/OS

and

DB2

packages.

3.

Run

the

jar

command

to

package

the

class

files

that

contain

the

methods

for

your

routine,

and

the

profiles

that

you

generated

in

step

2

into

a

JAR

file.

See

“Creating

JAR

files

for

Java

routines”

on

page

214

for

information

on

creating

the

JAR

file.

4.

Call

the

INSTALL_JAR

stored

procedure

to

define

the

JAR

file

to

DB2.

5.

If

another

user

defines

the

routine

to

DB2,

execute

the

SQL

GRANT

USAGE

ON

JAR

statement

to

grant

the

privilege

to

use

the

JAR

file

to

that

user.

6.

Execute

the

SQL

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

define

the

routine

to

DB2.

Specify

the

EXTERNAL

NAME

parameter

with

the

name

of

the

JAR

that

you

defined

to

DB2

in

step

4.

7.

If

you

are

using

the

JDBC/SQLJ

Driver

for

OS/390,

run

the

DB2

BIND

command

to

bind

the

DBRMs

that

you

created

in

step

2

into

packages.

Procedure

2:

Use

this

procedure

if

you

do

not

run

your

Java

routine

from

a

JAR

file.

1.

Run

the

sqlj

command

to

translate

the

source

code

to

produce

generated

Java

source

code

and

serialized

profiles,

and

to

compile

the

Java

program

to

produce

Java

bytecodes.

2.

If

you

are

using

the

JDBC/SQLJ

Driver

for

OS/390,

run

the

db2profc

command

to

produce

serialized

profiles

that

are

customized

for

DB2

UDB

for

z/OS

and

DBRMs.

If

you

are

using

the

DB2

Universal

JDBC

Driver,

run

the

db2sqljcustomize

command

to

produce

serialized

profiles

that

are

customized

for

DB2

UDB

for

z/OS

and

DB2

packages.

3.

Ensure

that

the

HFS

directory

that

contains

the

class

files

for

your

routine

is

in

the

CLASSPATH

for

the

WLM-established

stored

procedure

address

space.

You

specify

this

CLASSPATH

in

the

JAVAENV

data

set.

You

specify

the

JAVAENV

data

set

using

a

JAVAENV

DD

statement

in

the

startup

procedure

for

the

WLM-established

stored

procedure

address

space.

If

you

need

to

modify

the

CLASSPATH

environment

variable

in

the

JAVAENV

data

set

to

include

the

directory

for

the

Java

routine's

classes,

you

must

restart

the

WLM

address

space

to

make

it

use

the

modified

CLASSPATH.

4.

Use

the

SQL

CREATE

PROCEDURE

or

CREATE

FUNCTION

statement

to

define

the

routine

to

DB2.

Specify

the

EXTERNAL

NAME

parameter

without

a

JAR

name.

5.

If

you

are

using

the

JDBC/SQLJ

Driver

for

OS/390,

run

the

DB2

BIND

command

to

bind

the

DBRMs

that

you

created

in

step

2

into

packages.

Procedure

3:

Use

IBM

DB2

Stored

Procedure

Builder

to

perform

all

of

the

program

preparation

steps.

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

213

|
|
|

|
|
|

|
|

|
|
|

|
|
|

Creating

JAR

files

for

Java

routines

A

convenient

way

to

ensure

that

all

modules

of

a

Java

routine

are

accessible

is

to

store

those

modules

in

a

JAR

file.

You

create

the

JAR

file

by

running

the

jar

command

in

z/OS

UNIX

System

Services.

To

create

the

JAR

file,

follow

these

steps:

1.

If

the

Java

source

file

does

not

contain

a

package

statement,

change

to

the

directory

that

contains

the

class

file

for

the

Java

routine,

which

you

created

by

running

the

javac

command.

For

example,

if

JDBC

routine

Add_customer.java

is

in

/u/db2res3/acmejos,

change

to

directory

/u/db2res3/acmejos.

If

the

Java

source

file

contains

a

package

statement,

change

to

the

directory

that

is

one

level

above

the

directory

that

is

named

in

the

package

statement.

For

example,

suppose

the

package

statement

is:

package

lvlOne.lvlTwo.lvlThree;

Change

to

the

directory

that

contains

lvlOne

as

an

immediate

subdirectory.

2.

Run

the

jar

command.

You

might

need

to

specify

at

least

these

options:

c

Creates

a

new

or

empty

archive.

v

Generates

verbose

output

on

stderr.

f

Specifies

that

the

argument

immediately

after

the

options

list

is

the

name

of

the

JAR

file

to

be

created.

For

example,

to

create

a

JAR

file

named

acmejos.jar

from

Add_customer.class,

which

is

in

package

acmejos,

execute

this

jar

command:

jar

-cvf

acmejos.jar

acmejos/Add_customer.class

To

create

a

JAR

file

for

an

SQLJ

routine,

you

also

need

to

include

all

generated

class

files,

such

as

classes

that

are

generated

for

iterators,

and

all

serialized

profile

files.

For

example,

suppose

that

all

classes

are

declared

to

be

in

package

acmejos,

and

all

class

files,

including

generated

class

files,

and

all

serialized

profile

files

for

SQLJ

routine

Add_customer.sqlj

are

in

directory

/u/db2res3/acmejos/.

To

create

a

JAR

file

named

acmejos.jar,

change

the

the

/u/db2res3

directory,

and

then

issue

this

jar

command:

jar

-cvf

acmejos.jar

acmejos/*.class

acmejos/*.ser

Example

of

preparing

a

Java

routine

for

execution

The

following

example

demonstrates

how

to

prepare

the

SQLJ

stored

procedure

that

is

shown

in

Figure

62

on

page

184

for

execution

using

the

DB2

Universal

JDBC

Driver.

This

example

uses

Procedure

1

in

“Preparing

interpreted

Java

routines

with

SQLJ

statements”

on

page

212.

1.

On

z/OS

UNIX

System

Services,

run

the

sqlj

command

to

translate

and

compile

the

SQLJ

source

code.

Assume

that

the

path

for

the

stored

procedure

source

program

is

/u/db2res3/s1/s1sal.sqlj.

Change

to

directory

/u/db2res3/s1,

and

issue

this

command:

sqlj

s1sal.sqlj

After

this

process

completes,

the

/u/db2res3/s1

directory

contains

these

files:

s1sal.java

s1sal.class

s1sal_SJProfile0.ser

214

Application

Programming

Guide

and

Reference

for

Java™

|

|
|
|
|

|
|
|

|
|

|
|

|

|

|

|

||

||

||
|

|
|

|

|
|
|
|
|
|
|

|

|

|
|
|
|

|
|

|
|
|

|

|

|
|
|

2.

On

z/OS

UNIX

System

Services,

run

the

db2sqljcustomize

command

to

produce

serialized

profiles

that

are

customized

for

DB2

UDB

for

z/OS

and

to

bind

the

DB2

packages

for

the

stored

procedure.

Change

to

the

/u/db2res3

directory,

and

issue

this

command:

db2sqljcustomize

-url

jdbc:db2://mvs1:446/SJCEC1

-user

db2adm

-password

db2adm

\

-bindoptions

"EXPLAIN

YES"

\

-collection

ADMCOLL

\

-rootpkgname

S1SAL

\

s1sal_SJProfile0.ser

After

this

process

completes,

s1sal_SJProfile0.ser

contains

a

customized

serialized

profile.

The

DB2

subsystem

contains

these

packages:

S1SAL1

S1SAL2

S1SAL3

S1SAL4

3.

On

z/OS

UNIX

System

Services,

run

the

jar

command

to

package

the

class

files

that

you

created

in

step

1

on

page

214

and

the

customized

serialized

profile

that

you

created

in

step

2

into

a

JAR

file.

Change

to

the

/u/db2res3

directory,

and

issue

this

command:

jar

-cvf

s1sal.jar

s1/*.class

s1/*.ser

After

this

process

completes,

the

/u/db2res3

directory

contains

this

file:

s1sal.jar

4.

Call

the

INSTALL_JAR

stored

procedure,

which

is

on

DB2

UDB

for

z/OS,

to

define

the

JAR

file

to

DB2.

You

need

to

execute

the

CALL

statement

from

a

static

SQL

program

or

from

an

ODBC

or

JDBC

program.

The

CALL

statement

looks

similar

to

this:

CALL

SQLJ.INSTALL_JAR(’file:/u/db2res3/s1sal.jar’,’MYSCHEMA.S1SAL’,0);

The

exact

form

of

the

CALL

statement

depends

on

the

language

of

the

program

that

issues

the

CALL

statement.

After

this

process

completes,

the

DB2

catalog

contains

JAR

file

MYSCHEMA.S1SAL.

5.

If

another

user

defines

the

routine

to

DB2,

on

DB2

UDB

for

z/OS,

execute

the

SQL

GRANT

USAGE

ON

JAR

statement

to

grant

the

privilege

to

use

the

JAR

file

to

that

user.

Suppose

that

you

want

any

user

to

be

able

to

define

the

stored

procedure

to

DB2.

This

means

that

all

users

need

the

USAGE

privilege

on

JAR

MYSCHEMA.S1SAL.

To

grant

this

privilege,

execute

this

SQL

statement:

GRANT

USAGE

ON

JAR

MYSCHEMA.S1SAL

TO

PUBLIC;

6.

On

DB2

UDB

for

z/OS,

execute

the

SQL

CREATE

PROCEDURE

statement

to

define

the

stored

procedure

to

DB2:

CREATE

PROCEDURE

SYSPROC.S1SAL

(DECIMAL(10,2)

INOUT)

FENCED

MODIFIES

SQL

DATA

COLLID

ADMCOLL

LANGUAGE

JAVA

EXTERNAL

NAME

'MYSCHEMA.S1SAL:s1.S1Sal.getSals'

WLM

ENVIRONMENT

WLMIJAV

DYNAMIC

RESULT

SETS

1

PROGRAM

TYPE

SUB

PARAMETER

STYLE

JAVA;

Chapter

6.

Preparing

and

running

JDBC

and

SQLJ

programs

215

|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

|

|

|

|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

Running

JDBC

and

SQLJ

programs

After

you

have

set

the

environment

variables

discussed

in

“Setting

environment

variables

for

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

236

and

prepared

your

program

for

execution,

your

program

is

ready

to

run.

To

ensure

that

the

program

can

find

all

the

files

that

it

needs:

v

For

an

SQLJ

program,

put

the

serialized

profiles

for

the

program

in

the

same

directory

as

the

class

files

for

the

program.

v

Include

class

files

that

are

used

by

the

program

in

the

CLASSPATH.

To

run

your

JDBC

or

SQLJ

program,

execute

the

java

command

from

the

z/OS

UNIX

System

Services

command

line:

java

program-name

216

Application

Programming

Guide

and

Reference

for

Java™

Chapter

7.

Installing

JDBC

and

SQLJ

The

procedures

in

this

topic

describe

what

you

need

to

do

to

install

DB2

JDBC

and

SQLJ.

See

the

appropriate

topic

for

the

type

of

driver

that

you

are

installing.

Installing

the

DB2

Universal

JDBC

Driver

To

install

the

DB2

Universal

JDBC

Driver,

follow

these

steps:

1.

Install

Java

2

Technology

Edition,

SDK

1.3.1

or

higher.

If

you

plan

to

implement

Java

stored

procedures

and

user-defined

functions

on

this

DB2

subsystem,

install

Java

2

Technology

Edition,

SDK

1.3.1,

SDK

1.4.1,

or

higher.

2.

If

you

are

migrating

from

the

JDBC/SQLJ

Driver

for

OS/390,

back

up

all

of

the

.sqlj,

.ser,

.java,

.and

.class

files

for

applications

that

you

created

under

that

driver.

3.

On

z/OS,

enable

TCP/IP.

See

IBM

TCP/IP

for

MVS:

Customization

&

Administration

Guide.

4.

When

you

allocate

and

load

the

DB2

UDB

for

z/OS

libraries,

include

the

steps

that

allocate

and

load

the

DB2

Universal

JDBC

Driver

libraries.

See

“Loading

the

DB2

Universal

JDBC

Driver

libraries”

on

page

218

for

details.

5.

On

DB2

UDB

for

z/OS,

enable

distributed

data

facility

(DDF)

and

TCP/IP

support.

See

Part

3

of

DB2

Installation

Guide.

6.

On

DB2

UDB

for

z/OS,

set

subsystem

parameter

DESCSTAT

to

YES.

DESCSTAT

corresponds

to

installation

field

DESCRIBE

FOR

STATIC

on

panel

DSNTIPF.

See

Part

2

of

DB2

Installation

Guide

for

information

on

setting

DESCSTAT.

This

step

is

necessary

for

SQLJ

support.

7.

In

z/OS

UNIX

System

Services,

edit

your

.profile

file

to

customize

the

environment

variable

settings.

You

use

this

step

to

set

the

libraries,

paths,

and

files

that

the

DB2

Universal

JDBC

Driver

uses.

See

“Setting

environment

variables

for

the

DB2

Universal

JDBC

Driver”

on

page

218

for

details.

8.

Optional:

Set

the

program

control

extended

attribute

for

DB2

Universal

JDBC

Driver

DLLs.

This

step

is

necessary

only

if

a

product

that

uses

the

DB2

Universal

JDBC

Driver

requires

it.

See

“Setting

program

control

for

the

DB2

Universal

JDBC

Driver”

on

page

222

for

details.

9.

Optional:

In

z/OS

UNIX

System

Services,

customize

the

DB2

Universal

JDBC

Driver

global

properties

file.

See

“Customizing

the

DB2

Universal

JDBC

Driver

global

properties

file”

on

page

219

for

details.

10.

On

DB2

UDB

for

z/OS,

enable

the

DB2-supplied

stored

procedures

that

are

used

by

the

DB2

Universal

JDBC

Driver.

See

“Enabling

the

DB2-supplied

stored

procedures

used

by

the

DB2

Universal

JDBC

Driver”

on

page

223.

11.

In

z/OS

UNIX

System

Services,

run

the

DB2binder

utility

to

bind

the

packages

for

the

DB2

Universal

JDBC

Driver.

See

“Binding

the

packages

for

the

DB2

Universal

JDBC

Driver”

on

page

226.

12.

If

you

plan

to

use

Universal

Driver

type

4

connectivity

to

implement

distributed

transactions

against

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers:

In

z/OS

UNIX

System

Services,

run

the

DB2T4XAIndoubtUtil

utility

on

the

z/OS

system

on

which

you

are

installing

z/OS

Application

Connectivity

to

DB2

for

z/OS.

Run

the

utility

once

for

each

of

the

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers.

See

“Enabling

distributed

transactions

that

include

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers”

on

page

228

for

details.

13.

If

you

are

migrating

from

the

JDBC/SQLJ

Driver

for

OS/390,

and

you

have

SQLJ

applications:

In

z/OS

UNIX

System

Services,

run

the

db2sqljupgrade

©

Copyright

IBM

Corp.

1998,

2004

217

utility

to

convert

serialized

profiles

that

you

customized

under

the

JDBC/SQLJ

Driver

for

OS/390

to

the

format

for

the

DB2

Universal

JDBC

Driver.

See

“Converting

JDBC/SQLJ

Driver

for

OS/390

serialized

profiles

for

the

DB2

Universal

JDBC

Driver”

on

page

229.

14.

If

you

plan

to

use

LOB

locators

to

access

DBCLOB

columns

in

DB2

tables

on

DB2

UDB

for

z/OS

servers:

In

z/OS

UNIX

System

Services,

run

the

DB2LobTableCreator

utility

on

each

of

those

servers

to

create

tables

that

are

needed

for

fetching

LOB

locators.

See

“Enabling

retrieval

of

DBCLOB

columns

with

LOB

locators

on

DB2

UDB

for

OS/390

and

z/OS

servers”

on

page

230.

Loading

the

DB2

Universal

JDBC

Driver

libraries

When

you

install

DB2

UDB

for

z/OS,

include

the

steps

for

allocating

the

HFS

directory

structure

and

using

SMP/E

to

load

the

DB2

Universal

JDBC

Driver

libraries.

The

jobs

that

perform

these

functions

are:

DSNISMKD

Invokes

the

DSNMKDIR

EXEC

to

allocate

the

HFS

directory

structure.

DSNDDEF2

Includes

steps

to

define

DDDEFs

for

the

DB2

Universal

JDBC

Driver

libraries.

DSNRECV3

Includes

steps

that

perform

the

SMP/E

RECEIVE

function

for

the

DB2

Universal

JDBC

Driver

libraries.

DSNAPPL2

Includes

the

steps

that

perform

the

SMP/E

APPLY

CHECK

and

APPLY

functions

for

the

DB2

Universal

JDBC

Driver

libraries.

DSNACEP2

Includes

the

steps

that

perform

the

SMP/E

ACCEPT

CHECK

and

ACCEPT

functions

for

the

DB2

Universal

JDBC

Driver

libraries.

See

IBM

DATABASE

2

Universal

Database

for

z/OS

Program

Directory

for

information

on

allocating

and

loading

DB2

data

sets.

Setting

environment

variables

for

the

DB2

Universal

JDBC

Driver

The

environment

variables

that

you

must

set

are:

PATH

Modify

PATH

to

include

the

directory

that

contains

the

shell

scripts

that

invoke

DB2

Universal

JDBC

Driver

program

preparation

and

debugging

functions.

If

the

DB2

Universal

JDBC

Driver

is

installed

in

/usr/lpp/db2810/jcc,

modify

PATH

as

follows:

export

PATH=/usr/lpp/db2810/jcc/bin:$PATH

LIBPATH

The

DB2

Universal

JDBC

Driver

contains

the

following

dynamic

load

libraries

(DLLs):

v

libdb2jcct2.so

v

libdb2jcct2zos.so

Those

DLLs

contain

the

native

(C

or

C++)

implementation

of

the

DB2

Universal

JDBC

Driver.

The

driver

uses

this

code

when

you

use

Universal

Driver

type

2

connectivity.

218

Application

Programming

Guide

and

Reference

for

Java™

Modify

LIBPATH

to

include

the

directory

that

contains

these

DLLs.

If

the

DB2

Universal

JDBC

Driver

is

installed

in

/usr/lpp/db2810/jcc,

modify

LIBPATH

as

follows:

export

LIBPATH=/usr:/usr/lib:/usr/lpp/db2810/jcc/lib:$LIBPATH

CLASSPATH

The

DB2

Universal

JDBC

Driver

contains

the

following

class

files:

db2jcc.jar

Contains

all

JDBC

classes

and

the

SQLJ

runtime

classes

for

the

DB2

Universal

JDBC

Driver.

db2jcc_javax.jar

Contains

a

subset

of

the

J2EE

classes

that

are

needed

by

the

DB2

Universal

JDBC

Driver.

sqlj.zip

Contains

the

classes

that

are

needed

to

prepare

SQLJ

applications

for

execution

under

the

DB2

Universal

JDBC

Driver.

db2jcc_license_cisuz.jar

A

license

file

that

permits

access

to

the

DB2

UDB

server.

Modify

your

CLASSPATH

to

include

these

files.

If

the

DB2

Universal

JDBC

Driver

is

installed

in

/usr/lpp/db2810/jcc,

modify

CLASSPATH

as

follows:

export

CLASSPATH=/usr/lpp/db2810/jcc/classes/db2jcc.jar:

\

/usr/lpp/db2810/jcc/classes/db2jcc_javax.jar:

\

/usr/lpp/db2810/jcc/classes/sqlj.zip:

\

/usr/lpp/db2810/jcc/classes/db2jcc_license_cisuz.jar:

\

$CLASSPATH

Important:

Do

not

include

class

files

for

both

the

DB2

Universal

JDBC

Driver

and

the

JDBC/SQLJ

Driver

for

OS/390

in

your

CLASSPATH.

The

only

exception

to

this

rule

is

that

you

need

to

include

classes

for

both

drivers

in

your

CLASSPATH

while

you

convert

serialized

profiles

that

you

customized

under

the

JDBC/SQLJ

Driver

for

OS/390

to

the

format

for

the

DB2

Universal

JDBC

Driver.

See

“Converting

JDBC/SQLJ

Driver

for

OS/390

serialized

profiles

for

the

DB2

Universal

JDBC

Driver”

on

page

229.

If

you

use

Java

stored

procedures,

you

need

to

set

additional

environment

variables

in

a

JAVAENV

data

set.

See

“Setting

the

run-time

environment

for

interpreted

Java

stored

procedures”

on

page

170

for

more

information.

Customizing

the

DB2

Universal

JDBC

Driver

global

properties

file

The

DB2

Universal

JDBC

Driver

global

properties

file

contains

global

settings

for

Universal

Driver

type

2

connectivity

in

the

z/OS

environment.

The

DB2

Universal

JDBC

Driver

global

properties

file

is

a

text

file

in

which

each

line

is

of

this

form:

property=value

The

default

name

for

the

DB2

Universal

JDBC

Driver

global

properties

file

is

com/ibm/db2/jcc/DB2JccConfiguration.properties.

The

DB2

Universal

JDBC

Driver

determines

the

global

properties

to

use

in

the

following

way:

1.

If

the

Java

system

property

db2.jcc.propertiesFile

is

set,

the

driver

uses

the

path

name

that

is

in

that

system

property.

Chapter

7.

Installing

JDBC

and

SQLJ

219

2.

If

the

db2.jcc.propertiesFile

system

property

is

not

set,

the

driver

looks

for

com/ibm/db2/jcc/DB2JccConfiguration.properties

using

a

standard

Java

resource

search.

The

directory

that

contains

this

path

needs

to

be

listed

in

the

class

path.

com/ibm/db2/jcc/DB2JccConfiguration.properties

can

be

in

a

JAR

file

that

is

listed

in

the

class

path.

Before

you

put

com/ibm/db2/jcc/DB2JccConfiguration.properties

in

a

JAR

file,

you

need

to

convert

the

contents

to

Unicode.

To

do

that,

follow

these

steps:

a.

Rename

com/ibm/db2/jcc/DB2JccConfiguration.properties

to

another

name,

such

as

EBCDICVersion.properties.

b.

Run

the

iconv

shell

utility

on

the

z/OS

UNIX

System

Services

command

line

to

convert

the

file

to

Unicode.

For

example,

to

convert

EBCDICVersion.properties

to

a

Unicode

file

named

UnicodeVersion.properties,

issue

this

command:

iconv

-f

ibm-1047

-t

utf-8

EBCDICVersion.properties

\

>

UnicodeVersion.properties

c.

Add

the

Unicode

file

to

the

JAR

file.

In

the

JAR

file,

the

global

properties

file

must

be

named

com/ibm/db2/jcc/DB2JccConfiguration.properties.

3.

If

a

com/ibm/db2/jcc/DB2JccConfiguration.properties

file

is

not

found,

the

DB2

Universal

JDBC

Driver

uses

default

values.

You

can

set

any

of

the

following

properties

in

the

DB2

Universal

JDBC

Driver

global

properties

file.

db2.jcc.ssid

Specifies

the

name

of

the

DB2

UDB

subsystem

that

is

used

as

the

local

subsystem

when

an

application

uses

Universal

Driver

type

2

connectivity

on

z/OS.

For

example:

db2.jcc.ssid=DB2A

If

you

do

not

specify

the

db2.jcc.ssid

property,

the

DB2

Universal

JDBC

Driver

uses

the

SSID

value

from

the

DSNHDECP

data-only

load

module.

When

you

install

DB2

UDB

for

z/OS,

a

DSNHDECP

module

is

created

in

the

prefix.SDSNEXIT

data

set

and

the

prefix.SDSNLOAD

data

set.

Other

DSNHDECP

load

modules

might

be

created

in

other

data

sets

for

selected

applications.

TheDB2

Universal

JDBC

Driver

must

load

a

DSNHDECP

module

before

it

can

read

the

SSID

value.

z/OS

searches

data

sets

in

the

following

places,

and

in

the

following

order,

for

the

DSNHDECP

module:

1.

Job

pack

area

(JPA)

2.

TASKLIB

3.

STEPLIB

or

JOBLIB

4.

LPA

5.

Libraries

in

the

link

list

You

need

to

ensure

that

if

your

system

has

more

than

one

copy

of

the

DSNHDECP

module,

z/OS

finds

the

data

set

that

contains

the

correct

copy

for

the

DB2

Universal

JDBC

Driver

first.

db2.jcc.pkList

Specifies

a

package

list

that

is

used

for

the

underlying

RRSAF

CREATE

THREAD

call

when

a

JDBC

or

SQLJ

connection

to

a

data

source

is

established.

Specify

this

property

if

you

do

not

bind

plans

for

your

SQLJ

programs

or

for

the

JDBC

driver.

If

you

specify

this

property,

do

not

specify

db2.jcc.planName.

Recommendation:

Use

db2.jcc.pkList

instead

of

db2.jcc.planName.

220

Application

Programming

Guide

and

Reference

for

Java™

The

format

of

the

package

list

is:

��

�

,

collection-ID.*

��

The

default

value

of

db2.jcc.pkList

is

NULLID.*.

If

you

specify

the

-collection

parameter

when

you

run

com.ibm.db2.jcc.DB2Binder,

the

collection

ID

that

you

specify

for

DB2

Universal

JDBC

Driver

packages

when

you

run

com.ibm.db2.jcc.DB2Binder

must

also

be

in

the

package

list

for

the

db2.jcc.pkList

property.

See

“Binding

the

packages

for

the

DB2

Universal

JDBC

Driver”

on

page

226

for

information

about

com.ibm.db2.jcc.DB2Binder.

You

can

override

db2.jcc.pkList

by

setting

the

pkList

property

for

a

Connection

or

DataSource

object.

The

following

example

specifies

a

package

list

for

a

DB2

Universal

JDBC

Driver

instance

whose

packages

are

in

collection

JDBCCID.

SQLJ

applications

that

are

prepared

under

this

driver

instance

are

bound

into

collections

SQLJCID1,

SQLJCID2,

or

SQLJCID3.

db2.jcc.pkList=JDBCCID.*,SQLJCID1.*,SQLJCID2.*,SQLJCID3.*

db2.jcc.planName

Specifies

a

DB2

plan

name

that

is

used

for

the

underlying

RRSAF

CREATE

THREAD

call

when

a

JDBC

or

SQLJ

connection

to

a

data

source

is

established.

Specify

this

property

if

you

bind

plans

for

your

SQLJ

programs

and

for

the

JDBC

driver

packages.

If

you

specify

this

property,

do

not

specify

db2.jcc.pkList.

If

you

do

not

specify

this

property

or

the

db2.jcc.pkList

property,

the

DB2

Universal

JDBC

Driver

uses

the

db2.jcc.pkList

default

value

of

NULLID.*.

If

you

specify

db2.jcc.planName,

you

need

to

bind

the

packages

that

you

produce

when

you

run

com.ibm.db2.jcc.DB2Binder

into

a

plan

whose

name

is

the

value

of

this

property.

You

also

need

to

bind

all

SQLJ

packages

into

a

plan

whose

name

is

the

value

of

this

property.

You

can

override

db2.jcc.planName

by

setting

the

planName

property

for

a

Connection

or

DataSource

object.

The

following

example

specifies

a

plan

name

of

MYPLAN

for

the

DB2

Universal

JDBC

Driver

JDBC

packages

and

SQLJ

packages.

db2.jcc.planName=MYPLAN

db2.jcc.override.traceFile

Enables

the

DB2

Universal

JDBC

Driver

trace

for

Java

driver

code,

and

specifies

the

name

on

which

the

trace

file

names

are

based.

Specify

a

fully

qualified

z/OS

UNIX

System

Services

file

name

for

the

db2.jcc.override.traceFile

property

value.

The

db2.jcc.override.traceFile

property

overrides

the

traceFile

property

for

a

Connection

or

DataSource

object.

For

example,

specifying

the

following

setting

for

db2.jcc.override.traceFile

enables

tracing

of

the

DB2

Universal

JDBC

Driver

Java

code

to

a

file

named

/SYSTEM/tmp/jdbctrace:

db2.jcc.override.traceFile=/SYSTEM/tmp/jdbctrace

Chapter

7.

Installing

JDBC

and

SQLJ

221

You

should

set

the

trace

properties

under

the

direction

of

IBM

Software

Support.

db2.jcc.t2zosTraceFile

Enables

the

DB2

Universal

JDBC

Driver

trace

for

C/C++

native

driver

code

for

Universal

Driver

type

2

connectivity,

and

specifies

the

name

on

which

the

trace

file

names

are

based.

This

property

is

required

for

collecting

trace

data

for

C/C++

native

driver

code.

Specify

a

fully

qualified

z/OS

UNIX

System

Services

file

name

for

the

db2.jcct.t2zosTraceFile

property

value.

For

example,

specifying

the

following

setting

for

db2.jcct.t2zosTraceFile

enables

tracing

of

the

DB2

Universal

JDBC

Driver

C/C++

native

code

to

a

file

named

/SYSTEM/tmp/jdbctraceNative:

db2.jcc.t2zosTraceFile=/SYSTEM/tmp/jdbctraceNative

You

should

set

the

trace

properties

under

the

direction

of

IBM

Software

Support.

db2.jcc.t2zosTraceBufferSize

Specifies

the

size

of

a

trace

buffer

in

virtual

storage

that

is

used

for

tracing

the

processing

that

is

done

by

the

C/C++

native

driver

code.

This

value

is

also

the

maximum

amount

of

C/C++

native

driver

trace

information

that

can

be

collected.

Specify

a

value

in

kilobytes.

The

default

is

256

KB.

This

property

is

used

only

if

the

db2.jcc.t2zosTraceFile

property

is

set.

Recommendation:

To

avoid

a

performance

impact,

specify

a

value

of

1024

or

less.

For

example,

to

set

a

trace

buffer

size

of

1024

KB,

use

this

setting:

db2.jcc.t2zosTraceBufferSize=1024

You

should

set

the

trace

properties

under

the

direction

of

IBM

Software

Support.

Setting

program

control

for

the

DB2

Universal

JDBC

Driver

The

DB2

Universal

JDBC

Driver

can

be

used

with

a

variety

of

other

program

products

and

runtime

environments.

Some

program

products

that

are

used

with

the

DB2

Universal

JDBC

Driver

include

privileged

code

that

requires

a

program

controlled

environment.

WebSphere

Application

Server

is

one

example

of

a

program

product

that

requires

a

program

controlled

environment.

Although

the

DB2

Universal

JDBC

Driver

does

not

require

any

program

control

settings,

you

might

need

to

set

program

control

attributes

if

the

DB2

Universal

JDBC

Driver

is

used

in

an

environment

that

requires

program

control.

The

following

sections

describe

how

to

set

program

control

attributes

for

data

sets

that

commonly

require

them.

Program

control

for

DLLs

in

HFS

Some

program

products

require

that

the

program

control

extended

attribute

is

set

for

all

of

the

DB2

Universal

JDBC

Driver

dynamic

load

libraries

(DLLs)

that

reside

in

the

/usr/lpp/db2810/jcc/lib

directory.

To

set

this

attribute,

issue

the

following

command

in

z/OS

UNIX

System

Services:

extattr

+p

/usr/lpp/db2810/jcc/lib/*

Applying

maintenance

to

the

DB2

Universal

JDBC

Driver

causes

the

program

control

attribute

to

be

turned

off.

Therefore,

after

you

apply

maintenance,

you

need

to

set

this

attribute

again.

222

Application

Programming

Guide

and

Reference

for

Java™

Program

control

for

z/OS

data

sets

The

DB2

Universal

JDBC

Driver

uses

z/OS

data

sets

with

names

like

the

following

ones.

(Your

high-level

qualifer

might

be

different.)

These

data

sets

might

also

require

program

control:

v

DSN810.SDSNEXIT

v

DSN810.SDSNLOAD

v

DSN810.SDSNLOD2

v

SYS1.CSSLIB

If

you

are

using

RACF

as

your

external

security

system,

you

need

to

issue

RACF

commands

like

the

following

ones

to

set

program

control

for

these

data

sets:

RALTER

PROGRAM

*

ADDMEM(’DSN810.SDSNEXIT’//NOPADCHK)

UACC(READ)

RALTER

PROGRAM

*

ADDMEM(’DSN810.SDSNLOAD’//NOPADCHK)

UACC(READ)

RALTER

PROGRAM

*

ADDMEM(’DSN810.SDSNLOD2’//NOPADCHK)

UACC(READ)

RALTER

PROGRAM

*

ADDMEM(’SYS1.CSSLIB’//NOPADCHK)

UACC(READ)

SETROPTS

WHEN(PROGRAM)

REFRESH

If

you

are

using

some

other

external

security

system

besides

RACF,

see

the

documentation

for

that

system

for

information

on

how

to

set

program

control

on

these

data

sets.

Enabling

the

DB2-supplied

stored

procedures

used

by

the

DB2

Universal

JDBC

Driver

Before

you

can

use

certain

functions

of

the

DB2

Universal

JDBC

Driver

on

a

DB2

UDB

for

z/OS

subsystem,

you

need

to

install

the

following

DB2-supplied

stored

procedures:

v

SQLCOLPRIVILEGES

v

SQLCOLUMNS

v

SQLFOREIGNKEYS

v

SQLGETTYPEINFO

v

SQLPRIMARYKEYS

v

SQLPROCEDURECOLS

v

SQLPROCEDURES

v

SQLSPECIALCOLUMNS

v

SQLSTATISTICS

v

SQLTABLEPRIVILEGES

v

SQLTABLES

v

SQLUDTS

v

SQLCAMESSAGE

To

install

the

stored

procedures,

you

need

to

perform

these

steps.

It

is

assumed

that

you

already

have

WLM

installed.

1.

Set

up

a

WLM

environment

for

running

the

stored

procedures.

To

set

up

a

WLM

application

environment

for

these

stored

procedures,

you

need

to

define

a

JCL

startup

procedure

for

the

WLM

environment,

and

define

the

application

environment

to

WLM.

See

“Creating

the

WLM

address

space

startup

procedure

for

the

DB2

Universal

JDBC

Driver

stored

procedures”

on

page

224

and

“Defining

the

WLM

application

environment

for

the

the

DB2

Universal

JDBC

Driver

stored

procedures”

on

page

224.

2.

Define

the

stored

procedures

to

DB2

and

bind

the

stored

procedure

packages.

See

“Defining

the

DB2

Universal

JDBC

Driver

stored

procedures

to

DB2

and

creating

the

stored

procedure

packages”

on

page

225.

Chapter

7.

Installing

JDBC

and

SQLJ

223

Creating

the

WLM

address

space

startup

procedure

for

the

DB2

Universal

JDBC

Driver

stored

procedures

You

can

use

the

DSN8WLMP

sample

startup

procedure

as

a

model

for

your

stored

procedure

address

space

startup

procedure.

Make

the

following

changes

to

that

procedure:

1.

Change

the

APPLENV

value

to

match

the

definition

name

that

you

specify

in

the

WLM

Definition

Menu.

See

“Defining

the

WLM

application

environment

for

the

the

DB2

Universal

JDBC

Driver

stored

procedures.”

2.

Change

the

startup

procedure

name

to

match

the

procedure

name

that

you

specify

in

the

WLM

Create

an

Application

Environment

menu.

3.

Change

the

DB2SSN

value

to

the

subsystem

name

of

your

DB2

UDB

for

z/OS

subsystem.

4.

Edit

the

data

set

names

to

match

your

data

set

names.

Defining

the

WLM

application

environment

for

the

the

DB2

Universal

JDBC

Driver

stored

procedures

To

define

the

application

environment

to

WLM,

specify

values

similar

to

those

that

are

shown

on

the

following

WLM

panels.

File

Utilities

Notes

Options

Help

--

Definition

Menu

WLM

Appl

Command

===>

Definition

data

set

.

:

none

Definition

name

.

.

.

.

WLMENV

Description

.

.

.

.

.

.

Environment

for

Development

Center

Select

one

of

the

following

options.

.

.

9

1.

Policies

2.

Workloads

3.

Resource

Groups

4.

Service

Classes

5.

Classification

Groups

6.

Classification

Rules

7.

Report

Classes

8.

Service

Coefficients/Options

9.

Application

Environments

10.

Scheduling

Environments

Definition

name

Specify

the

name

of

the

WLM

application

environment

that

you

are

setting

up

for

stored

procedures.

This

value

needs

to

match

the

APPLENV

value

in

the

WLM

address

space

startup

procedure.

Description

Specify

any

value.

Options

Specify

9

(Application

Environments).

224

Application

Programming

Guide

and

Reference

for

Java™

Application-Environment

Notes

Options

Help

--

Create

an

Application

Environment

Command

===>

Application

Environment

Name

.

:

WLMENV

Description

.

.

.

.

.

.

.

.

.

.

Environment

for

Development

Center

Subsystem

Type

.

.

.

.

.

.

.

.

.

DB2

Procedure

Name

.

.

.

.

.

.

.

.

.

DSN8WLMP

Start

Parameters

.

.

.

.

.

.

.

.

DB2SSN=DB2T,NUMTCB=3,APPLENV=WLMENV

Limit

on

starting

server

address

spaces

for

a

subsystem

instance:

1

1.

No

limit.

2.

Single

address

space

per

system.

3.

Single

address

spaces

per

sysplex.

Subsystem

Type

Specify

DB2.

Procedure

Name

This

name

must

match

the

name

of

the

JCL

startup

procedure

for

the

stored

procedure

address

spaces

that

are

associated

with

this

application

environment.

Start

Parameters

If

the

DB2

subsystem

in

which

the

stored

procedure

runs

is

not

in

a

Sysplex,

the

DB2SSN

value

must

match

the

name

of

that

DB2

subsystem.

If

the

same

JCL

is

used

for

multiple

DB2

subsystems,

specify

DB2SSN=&IWMSSNM.

The

NUMTCB

value

depends

on

the

type

of

stored

procedure

that

you

are

running.

The

maximum

value

should

be

between

5

and

8.

The

APPLENV

value

must

match

the

value

that

you

specify

in

the

WLM

address

space

startup

procedure

and

on

the

CREATE

PROCEDURE

statements

for

the

stored

procedures.

See

“Defining

the

DB2

Universal

JDBC

Driver

stored

procedures

to

DB2

and

creating

the

stored

procedure

packages.”

Limit

on

starting

server

address

spaces

for

a

subsystem

instance

Specify

1

(no

limit).

Defining

the

DB2

Universal

JDBC

Driver

stored

procedures

to

DB2

and

creating

the

stored

procedure

packages

DB2

provides

CREATE

PROCEDURE

statements

that

you

can

use

to

define

the

DB2

Universal

JDBC

Driver

stored

procedures

to

DB2

and

BIND

PACKAGE

commands

that

you

can

use

to

bind

the

stored

procedure

packages.

They

are

in

these

jobs:

DSNTIJSG

Use

this

job

if

you

are

defining

the

stored

procedures

as

part

of

installing

or

migrating

a

DB2

subsystem.

Before

you

run

this

job,

you

need

to

modify

the

WLM

ENVIRONMENT

parameter

value

for

each

stored

procedure

to

match

the

Application

Environment

Name

value

that

you

specified

in

the

WLM

panels

and

the

APPLENV

name

that

you

specified

in

the

WLM

address

space

startup

procedure.

Other

customizations

are

made

as

part

of

the

installation

process.

DSNTIJMS

Use

this

job

if

you

are

defining

the

stored

procedures

after

you

install

or

migrate

a

DB2

subsystem.

Chapter

7.

Installing

JDBC

and

SQLJ

225

Before

you

run

this

job,

you

need

to

make

the

modifications

that

are

described

in

the

job

prolog.

Binding

the

packages

for

the

DB2

Universal

JDBC

Driver

To

bind

the

packages

for

the

DB2

Universal

JDBC

Driver,

run

the

DB2binder

utility.

This

utility

binds

the

packages

and

grants

EXECUTE

authority

on

the

packages

to

PUBLIC.

DB2binder

syntax

��

java

com.ibm.db2.jcc.DB2Binder

-url

jdbc:db2:

//server

/database

:port

�

�

-user

user-ID

-password

password

-size

integer

-collection

collection-name

�

�

�

,

-tracelevel

trace-option

-action

add

-action

replace

-keepdynamic

yes

-keepdynamic

no

�

�

-reopt

once

-help

��

DB2Binder

parameter

descriptions

-url

Specifies

the

data

source

at

which

the

DB2

Universal

JDBC

Driver

packages

are

to

be

bound.

The

variable

parts

of

the

-url

value

are:

jdbc:db2:

Indicates

that

the

connection

is

to

a

server

in

the

DB2

UDB

family.

server

The

domain

name

or

IP

address

of

the

database

server.

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

database

server.

This

is

an

integer

between

0

and

65535.

The

default

is

446.

database

A

name

for

the

database

server.

If

the

connection

is

to

a

DB2

for

z/OS

server,

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

-user

Specifes

the

user

ID

under

which

the

packages

are

to

be

bound.

This

user

must

have

BIND

authority

on

the

packages.

226

Application

Programming

Guide

and

Reference

for

Java™

-password

Specifes

the

password

for

the

user

ID.

-size

Specifies

the

number

of

DB2

packages

that

DB2binder

binds

for

each

of

the

four

DB2

isolation

levels

and

each

of

the

two

holdability

values.

The

DB2

Universal

JDBC

Driver

uses

these

packages

to

process

dynamic

SQL.

In

addition,

the

DB2binder

binds

a

single

package

that

the

DB2

Universal

JDBC

Driver

uses

for

static

SQL.

Therefore,

the

total

number

of

packages

that

DB2binder

binds

is:

4*2*integer+1

The

default

value

for

integer

is

3.

-collection

Specifies

the

collection

ID

for

the

packages

that

are

used

by

an

instance

of

the

DB2

Universal

JDBC

Driver.

The

default

is

NULLID.

DB2binder

translates

this

value

to

uppercase.

You

can

create

multiple

instances

of

the

DB2

Universal

JDBC

Driver

package

set

at

a

single

location

by

running

com.ibm.db2.jcc.DB2Binder

multiple

times,

and

specifying

a

different

value

for

-collection

each

time.

At

run

time,

you

select

a

copy

of

the

DB2

Universal

JDBC

Driver

by

setting

the

currentPackageSet

property

to

a

value

that

matches

a

-collection

value.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

information

on

the

currentPackageSet

property.

-tracelevel

Specifies

what

to

trace

while

DB2Binder

runs.

See

the

explanation

of

the

traceLevel

property

in

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

the

options

that

are

available.

-action

Specifies

whether

the

DB2

Universal

JDBC

Driver

packages

can

be

replaced.

add

Indicates

that

a

package

can

be

created

only

if

it

does

not

already

exist.

Add

is

the

default.

replace

Indicates

that

a

package

can

be

created

even

if

a

package

with

the

same

name

already

exists.

The

new

package

replaces

the

old

package.

-keepdynamic

Specifies

whether

DB2

keeps

already

prepared

dynamic

SQL

statements

in

the

dynamic

statement

cache

after

commit

points.

yes

Indicates

that

DB2

keeps

already

prepared

dynamic

SQL

statements

in

the

dynamic

statement

cache

after

commit

points.

no

Indicates

that

DB2

does

not

keep

already

prepared

dynamic

SQL

statements

in

the

dynamic

statement

cache

after

commit

points.

If

-keepdynamic

is

not

specified,

the

value

is

not

set.

Dynamic

statement

caching

is

done

if

the

database

server

is

set

up

to

do

dynamic

statement

caching.

-keepdynamic

is

applicable

only

for

DB2

UDB

for

z/OS

database

servers.

-reopt

once

Specifies

that

DB2

determines

and

caches

the

access

path

for

a

dynamic

statement

only

once

at

run

time,

or

until

the

prepared

statement

is

invalidated

or

removed

from

the

dynamic

statement

cache

and

needs

to

be

prepared

again.

Chapter

7.

Installing

JDBC

and

SQLJ

227

|
|
|

||
|

||
|

|
|
|
|

|
|
|
|

If

-reopt

once

is

not

specified,

the

value

is

not

set

and

is

the

default

for

the

database

server.

-reopt

once

is

applicable

only

for

DB2

UDB

for

z/OS

database

servers.

-help

Specifies

that

the

DB2binder

utility

describes

each

of

the

options

that

it

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

DB2Binder

example

Bind

the

JDBC

packages

for

a

DB2

Universal

JDBC

Driver

instance

on

the

DB2

subsystem

that

has

that

has

IP

address

mvs1,

port

number

446,

and

DB2

location

name

SJCEC1.

Use

the

default

collection

name

for

the

packages.

java

com.ibm.db2.jcc.DB2Binder

-url

jdbc:db2://mvs1:446/SJCEC1

\

-user

SYSADM

-password

mypass

Enabling

distributed

transactions

that

include

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers

If

you

plan

to

implement

distributed

transactions

that

include

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers,

you

need

to

run

the

DB2T4XAIndoubtUtil

utility

against

those

servers.

This

utility

allows

Version

7

servers,

which

do

not

have

built-in

support

for

distributed

transactions

that

implement

the

XA

specification,

to

emulate

that

support.

DB2T4XAIndoubtUtil

creates

a

table

named

SYSIBM.INDOUBT

and

a

DB2

package.

You

should

create

and

drop

these

objects

only

by

running

DB2T4XAIndoubtUtil.

To

run

the

DB2T4XAIndoubtUtil

utility,

you

need

SYSADM

authority.

DB2T4XAIndoubtUtil

syntax

��

java

com.ibm.db2.jcc.DB2T4XAIndoubtUtil

-url

jdbc:db2:

//server

/database

:port

�

�

-user

user-ID

-password

password

-help

-delete

��

DB2T4XAIndoubtUtil

parameter

descriptions

-url

Specifies

the

data

source

at

which

DB2T4XAIndoubtUtil

is

to

run.

The

variable

parts

of

the

-url

value

are:

jdbc:db2:

Indicates

that

the

connection

is

to

a

server

in

the

DB2

UDB

family.

server

The

domain

name

or

IP

address

of

the

database

server.

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

database

server.

This

is

an

integer

between

0

and

65535.

The

default

is

446.

database

A

name

for

the

database

server.

228

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

-user

Specifes

the

user

ID

under

which

DB2T4XAIndoubtUtil

is

to

run.

This

user

must

have

SYSADM

authority.

-password

Specifes

the

password

for

the

user

ID.

-help

Specifies

that

the

DB2T4XAIndoubtUtil

utility

describes

each

of

the

options

that

it

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

-delete

Specifies

that

the

DB2T4XAIndoubtUtil

utility

deletes

the

objects

that

were

created

when

DB2T4XAIndoubtUtil

was

run

previously.

DB2T4XAIndoubtUtil

example

Run

the

DB2T4XAIndoubtUtil

to

allow

a

DB2

UDB

for

OS/390

and

z/OS

Version

7

subsystem

that

has

IP

address

mvs1,

port

number

446,

and

DB2

location

name

SJCEC1

to

participate

in

XA

distributed

transactions.

java

com.ibm.db2.jcc.DB2T4XAIndoubtUtil

-url

jdbc:db2://mvs1:446/SJCEC1

\

-user

SYSADM

-password

mypass

Converting

JDBC/SQLJ

Driver

for

OS/390

serialized

profiles

for

the

DB2

Universal

JDBC

Driver

To

convert

serialized

profiles

that

you

customized

under

JDBC/SQLJ

Driver

for

OS/390

to

a

format

that

is

compatible

with

the

DB2

Universal

JDBC

Driver,

run

the

db2sqljupgrade

utility.

After

you

run

the

db2sqljupgrade

utility,

you

do

not

need

to

bind

new

packages

for

the

associated

SQLJ

applications.

Before

you

can

run

the

db2sqljupgrade

utility,

your

CLASSPATH

must

contain

the

full

path

names

for

the

db2j2classes.zip

file

for

the

JDBC/SQLJ

Driver

for

OS/390,

and

the

db2jcc.jar

and

sqlj.zip

files

for

the

DB2

Universal

JDBC

Driver.

db2sqljupgrade

syntax

��

db2sqljupgrade

-collection

collection-name

serialized-profile-name

serialized-profile-name.ser

��

Parameter

descriptions

-collection

Specifies

the

collection

ID

for

the

DB2

packages

that

were

bound

for

the

application

that

is

associated

with

the

JDBC/SQLJ

Driver

for

OS/390

serialized

profile.

The

packages

were

created

using

the

DB2

BIND

command

from

DBRMs

that

were

created

when

the

db2profc

command

was

run

to

create

the

serialized

profile.

The

default

is

NULLID.

serialized-profile-name

or

serialized-profile-name.ser

Specifies

the

name

of

the

JDBC/SQLJ

Driver

for

OS/390

serialized

profile

that

is

to

be

converted

to

the

DB2

Universal

JDBC

Driver

format.

Chapter

7.

Installing

JDBC

and

SQLJ

229

|

|

|
|
|
|

|
|
|

|
|

|||||||||||||||||||||||

|
|

|

|
|
|
|
|
|

|
|
|

The

db2sqljupgrade

utility

saves

the

original

serialized

profile

as

serialized-profile-name.ser_old.

Enabling

retrieval

of

DBCLOB

columns

with

LOB

locators

on

DB2

UDB

for

OS/390

and

z/OS

servers

If

you

plan

to

use

LOB

locators

to

retrieve

data

from

DBCLOB

columns

on

DB2

UDB

for

OS/390

and

z/OS

servers,

you

need

to

run

the

DB2LobTableCreator

utility

against

those

servers.

DB2LobTableCreator

creates

an

EBCDIC

table

named

SYSIBM.SYSDUMMYE,

an

ASCII

table

named

SYSIBM.SYSDUMMYA,

and

a

Unicode

table

named

SYSIBM.SYSDUMMYU.

You

should

create

these

objects

only

by

running

DB2LobTableCreator.

To

run

the

DB2LobTableCreator

utility,

you

need

authority

to

create

tables

in

the

DSNATPDB

database.

DB2LobTableCreator

syntax

��

java

java

com.ibm.db2.jcc.DB2LobTableCreator

-url

jdbc:db2:

//server

/database

:port

�

�

-user

user-ID

-password

password

-help

��

DB2LobTableCreator

parameter

descriptions

-url

Specifies

the

data

source

at

which

DB2LobTableCreator

is

to

run.

The

variable

parts

of

the

-url

value

are:

jdbc:db2:

Indicates

that

the

connection

is

to

a

server

in

the

DB2

UDB

family.

server

The

domain

name

or

IP

address

of

the

database

server.

port

The

TCP/IP

server

port

number

that

is

assigned

to

the

database

server.

This

is

an

integer

between

0

and

65535.

The

default

is

446.

database

A

name

for

the

database

server.

database

is

the

DB2

location

name

that

is

defined

during

installation.

All

characters

in

this

value

must

be

uppercase

characters.

You

can

determine

the

location

name

by

executing

the

following

SQL

statement

on

the

server:

SELECT

CURRENT

SERVER

FROM

SYSIBM.SYSDUMMY1;

-user

Specifes

the

user

ID

under

which

DB2LobTableCreator

is

to

run.

This

user

must

have

authority

to

create

tables

in

the

DSNATPDB

database.

-password

Specifes

the

password

for

the

user

ID.

230

Application

Programming

Guide

and

Reference

for

Java™

|
|

-help

Specifies

that

the

DB2LobTableCreator

utility

describes

each

of

the

options

that

it

supports.

If

any

other

options

are

specified

with

-help,

they

are

ignored.

DB2LobTableCreator

example

Run

the

DB2LobTableCreator

to

allow

LOB

locators

to

retrieve

data

from

DBCLOB

columns

in

tables

on

a

DB2

UDB

for

z/OS

subsystem

that

has

IP

address

mvs1,

port

number

446,

and

DB2

location

name

SJCEC1.

User

DBADM

has

authority

to

create

tables

in

the

DSNATPDB

database.

java

com.ibm.db2.jcc.DB2LobTableCreator

-url

jdbc:db2://mvs1:446/SJCEC1

\

-user

DBADM

-password

mypass

Installing

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

feature

z/OS

Application

Connectivity

to

DB2

for

z/OS

is

a

DB2

UDB

for

OS/390

and

z/OS

or

DB2

UDB

for

z/OS

feature

that

allows

Universal

Driver

type

4

connectivity

from

clients

that

do

not

have

DB2

UDB

for

z/OS

or

DB2

UDB

for

OS/390

and

z/OS

installed.

To

install

the

z/OS

Application

Connectivity

to

DB2

for

z/OS,

follow

these

steps.

Unless

otherwise

noted,

all

steps

apply

to

the

z/OS

system

on

which

you

are

installing

z/OS

Application

Connectivity

to

DB2

for

z/OS.

1.

Install

Java

2

Technology

Edition,

SDK

1.3.1

or

higher.

2.

On

the

z/OS

system

on

which

you

are

installing

z/OS

Application

Connectivity

to

DB2

for

z/OS,

and

on

any

z/OS

systems

that

contain

DB2

servers

to

which

you

plan

to

connect,

enable

TCP/IP.

See

IBM

TCP/IP

for

MVS:

Customization

&

Administration

Guide.

3.

Allocate

and

load

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

libraries.

See

“Loading

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

libraries”

on

page

232

for

details.

4.

On

all

DB2

UDB

for

z/OS

servers

to

which

you

plan

to

connect,

enable

distributed

data

facility

(DDF)

and

TCP/IP

support.

See

Part

3

of

DB2

Installation

Guide.

5.

On

all

DB2

UDB

for

z/OS

servers

to

which

you

plan

to

connect,

set

subsystem

parameter

DESCSTAT

to

YES.

DESCSTAT

corresponds

to

installation

field

DESCRIBE

FOR

STATIC

on

panel

DSNTIPF.

See

Part

2

of

DB2

Installation

Guide

for

information

on

setting

DESCSTAT.

This

step

is

necessary

for

SQLJ

support.

6.

In

z/OS

UNIX

System

Services,

edit

your

.profile

file

to

customize

the

environment

variable

settings.

You

use

this

step

to

set

the

libraries,

paths,

and

files

that

the

DB2

Universal

JDBC

Driver

uses.

See

“Setting

environment

variables

for

z/OS

Application

Connectivity

to

DB2

for

z/OS”

on

page

232

for

details.

7.

On

all

DB2

UDB

for

z/OS

servers

to

which

you

plan

to

connect,

enable

the

DB2-supplied

stored

procedures

that

are

used

by

the

DB2

Universal

JDBC

Driver.

See

“Enabling

the

DB2-supplied

stored

procedures

used

by

the

DB2

Universal

JDBC

Driver”

on

page

223.

8.

In

z/OS

UNIX

System

Services,

run

the

DB2binder

utility

on

the

z/OS

system

on

which

you

are

installing

z/OS

Application

Connectivity

to

DB2

for

z/OS

to

bind

the

packages

for

the

DB2

Universal

JDBC

Driver

at

all

DB2

UDB

for

z/OS

servers

to

which

you

plan

to

connect.

You

need

to

run

DB2binder

once

for

each

server.

See

“Binding

the

packages

for

the

DB2

Universal

JDBC

Driver”

on

page

226.

9.

If

you

plan

to

use

Universal

Driver

type

4

connectivity

to

implement

distributed

transactions

against

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers:

In

z/OS

UNIX

System

Services,

run

the

DB2T4XAIndoubtUtil

utility

on

Chapter

7.

Installing

JDBC

and

SQLJ

231

the

z/OS

system

on

which

you

are

installing

z/OS

Application

Connectivity

to

DB2

for

z/OS.

Run

the

utility

once

for

each

of

the

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers.

See

“Enabling

distributed

transactions

that

include

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers”

on

page

228

for

details.

10.

If

you

plan

to

use

LOB

locators

to

access

DBCLOB

columns

in

DB2

tables

on

DB2

UDB

for

z/OS

servers:

In

z/OS

UNIX

System

Services,

run

the

DB2LobTableCreator

utility

on

each

of

those

servers

to

create

tables

that

are

needed

for

fetching

LOB

locators.

See

“Enabling

retrieval

of

DBCLOB

columns

with

LOB

locators

on

DB2

UDB

for

OS/390

and

z/OS

servers”

on

page

230.

Loading

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

libraries

To

allocate

the

HFS

directory

structure

and

use

SMP/E

to

load

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

libraries,

run

the

following

jobs:

DDAALA

Creates

the

SMP/E

consolidate

software

inventory

(CSI)

file.

DDAALA

is

required

only

if

the

SMP/E

target

and

distribution

zones

are

not

created

and

allocated

to

the

SMP/E

global

zone.

DDAALB

Creates

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

target

and

distribution

zones.

Also

creates

DDDEFs

for

SMP/E

data

sets.

DDAALB

is

required

only

if

the

SMP/E

target

and

distribution

zones

are

not

created

and

allocated

to

the

SMP/E

global

zone.

DDAALLOC

Creates

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

target

and

distribution

libraries

and

defines

them

in

the

SMP/E

target

and

distribution

zones.

DDADDDEF

Creates

DDDEFs

for

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

target

and

distribution

libraries.

DDAISMKD

Invokes

the

DDAMKDIR

EXEC

to

allocate

the

HFS

directory

structure

for

the

z/OS

Application

Connectivity

to

DB2

for

z/OS.

DDARECEV

Performs

the

SMP/E

RECEIVE

function

for

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

libraries.

DDAAPPLY

Performs

the

SMP/E

APPLY

CHECK

and

APPLY

functions

for

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

libraries.

DDAACCEP

Performs

the

SMP/E

ACCEPT

CHECK

and

ACCEPT

functions

for

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

libraries.

See

z/OS

Application

Connectivity

to

DB2

for

z/OS

Program

Directory

for

information

on

allocating

and

loading

z/OS

Application

Connectivity

to

DB2

for

z/OS

data

sets.

Setting

environment

variables

for

z/OS

Application

Connectivity

to

DB2

for

z/OS

The

environment

variables

that

you

must

set

are:

232

Application

Programming

Guide

and

Reference

for

Java™

PATH

Modify

PATH

to

include

the

directory

that

contains

the

shell

scripts

that

invoke

DB2

Universal

JDBC

Driver

program

preparation

and

debugging

functions.

If

z/OS

Application

Connectivity

to

DB2

for

z/OS

is

installed

in

/usr/lpp/jcct4,

modify

PATH

as

follows:

export

PATH=/usr/lpp/jcct4/bin:$PATH

CLASSPATH

z/OS

Application

Connectivity

to

DB2

for

z/OS

contains

the

following

class

files:

db2jcc.jar

Contains

all

JDBC

classes

and

the

SQLJ

runtime

classes

for

Universal

Driver

type

4

connectivity.

db2jcc_javax.jar

Contains

a

subset

of

the

J2EE

classes

that

are

needed

for

Universal

Driver

type

4

connectivity.

sqlj.zip

Contains

the

classes

that

are

needed

to

prepare

SQLJ

applications

for

execution

under

the

DB2

Universal

JDBC

Driver.

db2jcc_license_cisuz.jar

A

license

file

that

permits

access

to

DB2

UDB

servers.

Modify

your

CLASSPATH

to

include

these

files.

If

z/OS

Application

Connectivity

to

DB2

for

z/OS

is

installed

in

/usr/lpp/jcct4,

modify

CLASSPATH

as

follows:

export

CLASSPATH=/usr/lpp/jcct4/classes/db2jcc.jar:

\

/usr/lpp/jcct4/classes/db2jcc_javax.jar:

\

/usr/lpp/jcct4/classes/sqlj.zip:

\

/usr/lpp/jcct4/classes/db2jcc_license_cisuz.jar:

\

$CLASSPATH

Important:

Do

not

include

class

files

for

both

the

DB2

Universal

JDBC

Driver

and

the

JDBC/SQLJ

Driver

for

OS/390

in

your

CLASSPATH.

The

only

exception

to

this

rule

is

that

you

need

to

include

classes

for

both

drivers

in

your

CLASSPATH

while

you

convert

serialized

profiles

that

you

customized

under

the

JDBC/SQLJ

Driver

for

OS/390

to

the

format

for

the

DB2

Universal

JDBC

Driver.

See

“Converting

JDBC/SQLJ

Driver

for

OS/390

serialized

profiles

for

the

DB2

Universal

JDBC

Driver”

on

page

229.

If

you

use

Java

stored

procedures,

you

need

to

set

additional

environment

variables

in

a

JAVAENV

data

set.

See

“Setting

the

run-time

environment

for

interpreted

Java

stored

procedures”

on

page

170

for

more

information.

Installing

the

JDBC/SQLJ

Driver

for

OS/390

To

install

JDBC

and

SQLJ,

follow

these

steps:

1.

Install

Java

2

Technology

Edition,

SDK

1.3.1

or

higher.

If

you

plan

to

implement

Java

stored

procedures

and

user-defined

functions

on

this

DB2

subsystem,

install

Java

2

Technology

Edition,

SDK

1.3.1,

SDK

1.4.1,

or

higher.

2.

When

you

allocate

and

load

the

DB2

libraries,

include

the

steps

that

allocate

and

load

the

JDBC

and

SQLJ

libraries.

See

“Loading

the

JDBC

and

SQLJ

libraries”

on

page

234

for

details.

3.

Set

DB2

subsystem

parameters

for

SQLJ

support.

See

“Setting

DB2

subsystem

parameters

for

SQLJ

support”

on

page

235

for

details.

4.

Log

on

to

TSO.

Specify

a

maximum

region

size

of

at

least

200000.

Chapter

7.

Installing

JDBC

and

SQLJ

233

Ensure

that

you

have

superuser

authority

(UID

0).

5.

Optional:

Set

the

program

control

extended

attribute

for

JDBC/SQLJ

Driver

for

OS/390

DLLs.

This

step

is

necessary

only

if

a

product

that

uses

the

JDBC/SQLJ

Driver

for

OS/390

requires

it.

See

“Setting

program

control

for

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

235

for

details.

6.

In

z/OS

UNIX

System

Services,

edit

your

.profile

file

to

customize

the

environment

variable

settings.

You

use

this

step

to

set

the

libraries,

paths,

and

files

that

JDBC

and

SQLJ

use,

and

to

indicate

which

JDBC

driver

you

want

to

use.

See

“Setting

environment

variables

for

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

236

for

details.

7.

Optional:

In

z/OS

UNIX

System

Services,

customize

the

SQLJ/JDBC

run-time

properties

file.

See

“The

SQLJ/JDBC

run-time

properties

file”

on

page

236

for

details.

The

default

path

name

is

/usr/lpp/db2810/classes/db2sqljjdbc.properties.

If

you

use

a

new

path

name

for

your

customized

run-time

properties

file,

you

need

to

specify

that

file

name

in

the

DB2SQLJPROPERTIES

environment

variable.

8.

Optional:

Run

the

db2genJDBC

utility

in

z/OS

UNIX

System

Services

to

customize

JDBC

resources.

You

do

not

need

to

perform

this

step

unless

you

need

to

alter

the

default

JDBC

resource

limits.

See

“Customizing

the

JDBC

profile

(optional)”

on

page

240

for

details.

9.

Prepare

the

JDBC

DBRMs

for

execution.

If

you

did

not

run

the

db2genJDBC

utility,

these

are

the

DBRMs

in

the

DSN810.SDSNDBRM

data

set.

If

you

ran

the

db2genJDBC

utility,

these

are

the

DBRMs

that

the

db2genJDBC

utility

produces.

In

TSO,

customize

and

run

job

DSNTJJCL

to

bind

the

JDBC

DBRMs

into

packages,

and

bind

the

packages

into

the

JDBC

plan.

DSNTJJCL

is

in

data

set

DSN810.SDSNSAMP.

See

“Binding

the

DBRMs”

on

page

241

for

details.

In

TSO,

grant

EXECUTE

authority

on

the

packages

and

plan

to

PUBLIC.

Loading

the

JDBC

and

SQLJ

libraries

When

you

install

DB2,

include

the

steps

for

allocating

the

HFS

directory

structure

and

using

SMP/E

to

load

the

JDBC

and

SQLJ

libraries.

The

jobs

that

perform

these

functions

are:

DSNISMKD

Invokes

the

DSNMKDIR

EXEC

to

allocate

the

HFS

directory

structure.

DSNDDEF2

Includes

steps

to

define

DDDEFs

for

the

JDBC

and

SQLJ

libraries.

DSNRECV3

Includes

steps

that

perform

the

SMP/E

RECEIVE

function

for

the

JDBC

and

SQLJ

libraries.

DSNAPPL2

Includes

the

steps

that

perform

the

SMP/E

APPLY

CHECK

and

APPLY

functions

for

the

JDBC

and

SQLJ

libraries.

DSNACEP2

Includes

the

steps

that

perform

the

SMP/E

ACCEPT

CHECK

and

ACCEPT

functions

for

the

JDBC

and

SQLJ

libraries.

See

IBM

DATABASE

2

Universal

Database

for

z/OS

Program

Directory

for

information

on

allocating

and

loading

DB2

data

sets.

234

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

Setting

DB2

subsystem

parameters

for

SQLJ

support

The

DESCRIBE

FOR

STATIC

field

on

DB2

installation

panel

DSNTIPF

sets

subsystem

parameter

DESCSTAT,

which

controls

whether

DB2

executes

DESCRIBEs

on

static

SQL

statements

when

it

performs

a

bind

operation.

If

you

use

named

iterators

in

your

SQLJ

programs,

and

you

do

not

use

online

checking,

DESCRIBE

FOR

STATIC

must

be

set

to

YES.

See

Part

2

of

DB2

Installation

Guide

for

information

on

setting

the

DESCRIBE

FOR

STATIC.

See

“Using

a

named

iterator

in

an

SQLJ

application”

on

page

67

for

information

on

named

iterators.

See

“Customizing

an

SQLJ

serialized

profile”

on

page

194

for

information

on

online

checking.

Setting

program

control

for

the

JDBC/SQLJ

Driver

for

OS/390

The

JDBC/SQLJ

Driver

for

OS/390

can

be

used

with

a

variety

of

other

program

products

and

runtime

environments.

Some

program

products

that

are

used

with

the

JDBC/SQLJ

Driver

for

OS/390

include

privileged

code

that

requires

a

program

controlled

environment.

WebSphere

Application

Server

is

one

example

of

a

program

product

that

requires

a

program

controlled

environment.

Although

the

JDBC/SQLJ

Driver

for

OS/390

does

not

require

any

program

control

settings,

you

might

need

to

set

program

control

attributes

if

the

JDBC/SQLJ

Driver

for

OS/390

is

used

in

an

environment

that

requires

program

control.

The

following

information

describes

how

to

set

program

control

attributes

for

data

sets

that

commonly

require

them.

Program

control

for

DLLs

in

HFS

Some

program

products

require

that

the

program

control

extended

attribute

is

set

for

all

of

the

JDBC/SQLJ

Driver

for

OS/390

dynamic

load

libraries

(DLLs)

that

reside

in

the

/usr/lpp/db2810/lib

directory.

To

set

this

attribute,

issue

the

following

command

in

z/OS

UNIX

System

Services:

extattr

+p

/usr/lpp/db2810/lib/*

Applying

maintenance

to

the

JDBC/SQLJ

Driver

for

OS/390

causes

the

program

control

attribute

to

be

turned

off.

Therefore,

after

you

apply

maintenance,

you

need

to

set

this

attribute

again.

Program

control

for

z/OS

data

sets

The

JDBC/SQLJ

Driver

for

OS/390

uses

z/OS

data

sets

with

names

like

the

following

ones.

(Your

high-level

qualifer

might

be

different.)

These

data

sets

might

also

require

program

control:

v

DSN810.SDSNEXIT

v

DSN810.SDSNLOAD

v

DSN810.SDSNLOD2

v

SYS1.CSSLIB

If

you

are

using

RACF

as

your

external

security

system,

you

need

to

issue

RACF

commands

like

the

following

ones

to

set

program

control

for

these

data

sets:

RALTER

PROGRAM

*

ADDMEM(’DSN810.SDSNEXIT’//NOPADCHK)

UACC(READ)

RALTER

PROGRAM

*

ADDMEM(’DSN810.SDSNLOAD’//NOPADCHK)

UACC(READ)

RALTER

PROGRAM

*

ADDMEM(’DSN810.SDSNLOD2’//NOPADCHK)

UACC(READ)

RALTER

PROGRAM

*

ADDMEM(’SYS1.CSSLIB’//NOPADCHK)

UACC(READ)

SETROPTS

WHEN(PROGRAM)

REFRESH

If

you

are

using

some

other

external

security

system

besides

RACF,

see

the

documentation

for

that

system

for

information

on

how

to

set

program

control

on

these

data

sets.

Chapter

7.

Installing

JDBC

and

SQLJ

235

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

Setting

environment

variables

for

the

JDBC/SQLJ

Driver

for

OS/390

The

environment

variables

that

you

must

set

are:

STEPLIB

Modify

STEPLIB

to

include

the

SDSNEXIT,

SDSNLOAD,

and

SDSNLOD2

data

sets.

For

example:

export

STEPLIB=DSN810.SDSNEXIT:DSN810.SDSNLOAD:DSN810.SDSNLOD2:$STEPLIB

PATH

Modify

PATH

to

include

the

directory

that

contains

the

shell

scripts

that

invoke

JDBC

and

SQLJ

program

preparation

and

debugging

functions.

If

JDBC

and

SQLJ

are

installed

in

/usr/lpp/db2810,

modify

PATH

as

follows:

export

PATH=/usr/lpp/db2810/bin:$PATH

The

PATH

environment

variable

is

not

used

in

the

CICS

environment.

LIBPATH

The

DB2

UDB

for

z/OS

JDBC/SQLJ

Driver

for

OS/390

contains

several

dynamic

load

libraries

(DLLs).

Modify

LIBPATH

to

include

the

directory

that

contains

these

DLLs.

If

SQLJ

and

JDBC

are

installed

in

/usr/lpp/db2810,

modify

LIBPATH

as

follows:

export

LIBPATH=/usr:/usr/lib:/usr/lpp/db2810/lib:$LIBPATH

CLASSPATH

Modify

the

CLASSPATH

to

include

the

following

file:

db2j2classes.zip

Contains

all

of

the

classes

necessary

to

prepare

and

run

JDBC

and

SQLJ

programs

with

the

JDBC

2.0

driver.

Assuming

that

JDBC

and

SQLJ

are

installed

in

/usr/lpp/db2810,

modify

CLASSPATH

as

follows:

export

CLASSPATH=/usr/lpp/db2810/classes/db2j2classes.zip:$CLASSPATH

DB2SQLJPROPERTIES

Specifies

the

fully-qualified

name

of

the

run-time

properties

file

for

the

DB2

UDB

for

z/OS

JDBC/SQLJ

Driver

for

OS/390.

The

run-time

properties

file

contains

various

entries

of

the

form

parameter=value

that

specify

program

preparation

and

run-time

options

that

the

DB2

UDB

for

z/OS

JDBC/SQLJ

Driver

for

OS/390

uses.

The

run-time

properties

file

is

read

when

the

driver

is

loaded.

If

you

do

not

set

the

DB2SQLJPROPERTIES

environment

variable,

the

driver

uses

the

default

name

./db2sqljjdbc.properties.

For

example,

to

use

a

run-time

properties

file

named

db2sqljjdbc.properties

that

is

in

the

/usr/lpp/db2810/classes

directory,

specify:

export

DB2SQLJPROPERTIES=/usr/lpp/db2810/classes/db2sqljjdbc.properties

If

you

use

Java

stored

procedures,

you

need

to

set

additional

environment

variables

in

a

JAVAENV

data

set.

See

“Setting

the

run-time

environment

for

interpreted

Java

stored

procedures”

on

page

170

for

more

information.

The

SQLJ/JDBC

run-time

properties

file

The

SQLJ/JDBC

run-time

properties

file

contains

settings

for

the

JDBC/SQLJ

Driver

for

OS/390.

The

SQLJ/JDBC

run-time

properties

file

is

a

text

file

in

which

each

line

is

of

this

form:

property=value

See

“Properties

in

the

JDBC/SQLJ

Driver

for

OS/390

SQLJ/JDBC

run-time

properties

file”

on

page

237

for

a

list

of

properties

that

you

can

specify.

236

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

The

JDBC/SQLJ

Driver

for

OS/390

determines

the

run-time

properties

file

to

use

in

the

following

way:

1.

If

the

DB2SQLJPROPERTIES

environment

variable

is

set,

the

driver

uses

the

path

name

that

is

in

this

environment

variable.

2.

If

the

DB2SQLJPROPERTIES

environment

variable

is

not

set,

the

driver

looks

in

the

current

working

directory

for

a

file

that

is

named

db2sqljjdbc.properties.

3.

If

there

is

no

file

in

the

current

working

directory

named

db2sqljjdbc.properties,

the

driver

uses

default

values

for

all

properties

that

can

be

set

in

the

run-time

properties

file.

For

the

CICS

environment,

the

settings

for

some

of

the

run-time

properties

are

different

than

for

other

environments.

See

“Special

considerations

for

CICS

applications,”

on

page

273

for

information

that

is

specific

to

CICS.

Properties

in

the

JDBC/SQLJ

Driver

for

OS/390

SQLJ/JDBC

run-time

properties

file

You

can

set

any

of

the

following

properties

in

the

SQLJ/JDBC

run-time

properties

file.

DB2SQLJDBRMLIB

Specifies

the

fully-qualified

name

of

the

z/OS

partitioned

data

set

into

which

DBRMs

are

placed.

DBRMs

are

generated

by

the

creation

of

a

JDBC

profile

and

the

customization

step

of

the

SQLJ

program

preparation

process.

For

example:

DB2SQLJDBRMLIB=USER.DBRMLIB.DATA

The

default

DBRM

data

set

name

is

prefix.DBRMLIB.DATA,

where

prefix

is

the

high-level

qualifier

that

was

specified

in

the

TSO

profile

for

the

user.

prefix

is

usually

the

user's

TSO

user

ID.

If

the

DBRM

data

set

does

not

already

exist,

you

need

to

create

it.

The

DBRM

data

set

requires

space

to

hold

all

the

SQL

statements,

with

additional

space

for

each

host

variable

name

and

some

header

information.

The

header

information

requires

approximately

two

records

for

each

DBRM,

20

bytes

for

each

SQL

record,

and

6

bytes

for

each

host

variable.

For

an

exact

format

of

the

DBRM,

see

the

DBRM

mapping

macro,

DSNXDBRM

in

library

DSN810.SDSNMACS.

The

DCB

attributes

of

the

DBRM

data

set

are

RECFM

FB

and

LRECL

80.

See

“Customizing

the

JDBC

profile

(optional)”

on

page

240

and

“Customizing

an

SQLJ

serialized

profile”

on

page

194

for

more

information

on

serialized

profile

customization.

DB2SQLJPLANNAME

Specifies

the

name

of

the

plan

that

is

associated

with

a

JDBC

or

an

SQLJ

application.

The

plan

is

created

by

the

DB2

UDB

for

z/OS

bind

process.

For

example:

DB2SQLJPLANNAME=SQLJPLAN

The

default

name

is

DSNJDBC.

DB2SQLJJDBCPROGRAM

Specifies

the

name

of

the

JDBC

profile

that

is

used

by

the

JDBC/SQLJ

Driver

for

OS/390.

For

example:

DB2SQLJJDBCPROGRAM=CONNPROF

Chapter

7.

Installing

JDBC

and

SQLJ

237

|
|
|
|
|
|
|
|

The

default

connected

profile

name

is

DSNJDBC.

See

“Customizing

the

JDBC

profile

(optional)”

on

page

240

for

information

on

creating

a

JDBC

connected

profile.

DB2SQLJSSID

Specifies

the

name

of

the

DB2

subsystem

to

which

a

JDBC

or

an

SQLJ

application

connects.

For

example:

DB2SQLJSSID=DSN

If

you

do

not

specify

the

DB2SQLJSSID

property,

the

JDBC/SQLJ

Driver

for

OS/390

uses

the

SSID

value

from

the

DSNHDECP

data-only

load

module.

When

you

install

DB2

UDB

for

z/OS,

a

DSNHDECP

module

is

created

in

the

prefix.SDSNEXIT

data

set

and

the

prefix.SDSNLOAD

data

set.

Other

DSNHDECP

load

modules

might

be

created

in

other

data

sets

for

selected

applications.

The

JDBC/SQLJ

Driver

for

OS/390

must

load

a

DSNHDECP

module

before

it

can

read

the

SSID

value.

z/OS

searches

data

sets

in

the

following

places,

and

in

the

following

order,

for

the

DSNHDECP

module:

1.

Job

pack

area

(JPA)

2.

TASKLIB

3.

STEPLIB

or

JOBLIB

4.

LPA

5.

Libraries

in

the

link

list

You

need

to

ensure

that

if

your

system

has

more

than

one

copy

of

the

DSNHDECP

module,

z/OS

finds

the

data

set

that

contains

the

correct

copy

for

the

JDBC/SQLJ

Driver

for

OS/390

first.

DB2SQLJMULTICONTEXT

Specifies

whether

each

connection

in

an

application

is

independent

of

other

connections

in

the

application,

and

each

connection

is

a

separate

unit

of

work,

with

its

own

commit

scope.

The

value

can

be

YES

or

NO.

For

example:

DB2SQLJMULTICONTEXT=YES

The

default

is

YES.

See

Chapter

12,

“JDBC/SQLJ

Driver

for

OS/390

multiple

z/OS

context

support,”

on

page

261

for

more

information

on

multiple

z/OS

context

support.

DB2CURSORHOLD

For

JDBC,

specifies

the

effect

of

a

commit

operation

on

open

DB2

cursors

(ResultSets).

The

value

can

be

YES

or

NO.

A

value

of

YES

means

that

cursors

are

not

destroyed

when

the

transaction

is

committed.

A

value

of

NO

means

that

cursors

are

destroyed

when

the

transaction

is

committed.

For

example:

DB2CURSORHOLD=NO

The

default

is

YES.

This

parameter

does

not

affect

cursors

in

a

transaction

that

is

rolled

back.

All

cursors

are

destroyed

when

a

transaction

is

rolled

back.

db2.connpool.max.size

Specifies

the

maximum

number

of

concurrent

physical

connections

(DB2

threads)

that

the

driver

maintains

in

the

connection

pool.

For

example:

db2.connpool.max.size=200

238

Application

Programming

Guide

and

Reference

for

Java™

The

default

is

100.

When

this

limit

is

reached,

no

new

connections

are

added

to

the

pool.

If

a

logical

connection

is

closed,

and

the

pool

is

at

the

maximum

size,

the

driver

closes

the

underlying

physical

connection.

db2.connpool.idle.timeout

Specifies

the

minimum

number

of

seconds

that

an

unused

physical

connection

remains

in

the

connection

pool

before

the

thread

is

closed.

For

example:

db2.connpool.idle.timeout=300

The

default

is

600.

Specifying

a

value

of

zero

disables

idle

connection

timeout.

db2.connpool.connect.create.timeout

Specifies

maximum

number

of

seconds

that

a

DataSource

object

waits

for

a

connection

to

a

data

source.

This

value

is

used

when

the

loginTimeout

property

for

the

DataSource

object

has

a

value

of

0.

For

example:

db2.connpool.connect.create.timeout=300

The

default

is

0.

A

value

of

zero

disables

connection

creation

timeout.

DB2SQLJ_TRACE_FILENAME

Enables

the

SQLJ/JDBC

trace

and

specifies

the

names

of

the

trace

files

to

which

the

trace

is

written.

This

parameter

is

required

for

collecting

trace

data.

For

example,

specifying

the

following

setting

for

DB2SQLJ_TRACE_FILENAME

enables

the

SQLJ/JDBC

trace

to

two

files

named

/SYSTEM/tmp/jdbctrace

and

/SYSTEM/tmp/jdbctrace.JTRACE:

DB2SQLJ_TRACE_FILENAME=/SYSTEM/tmp/jdbctrace

See

“Formatting

trace

data

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

271

for

more

information

on

the

SQLJ/JDBC

trace.

You

should

set

DB2SQLJ_TRACE_FILENAME

only

under

the

direction

of

IBM

Software

Support.

See

“Formatting

trace

data

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

271

for

information

on

formatting

trace

data.

DB2SQLJ_TRACE_BUFFERSIZE

Specifies

the

size

of

the

trace

buffer

in

virtual

storage

in

kilobytes.

SQLJ

rounds

the

number

that

you

specify

down

to

a

multiple

of

64

KB.

The

default

is

256

KB.

This

is

an

optional

parameter.

For

example:

DB2SQLJ_TRACE_BUFFERSIZE=1024

You

should

set

DB2SQLJ_TRACE_BUFFERSIZE

only

under

the

direction

of

IBM

Software

Support.

See

“Formatting

trace

data

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

271

for

information

on

formatting

trace

data.

DB2SQLJ_TRACE_WRAP

Enables

or

disables

wrapping

of

the

SQLJ

trace.

DB2J_TRACE_WRAP

can

have

one

of

the

following

values:

1

Wrap

the

trace

0

Do

not

wrap

the

trace

The

default

is

1.

This

parameter

is

optional.

For

example:

DB2SQLJ_TRACE_WRAP=0

Chapter

7.

Installing

JDBC

and

SQLJ

239

You

should

set

DB2SQLJ_TRACE_WRAP

only

under

the

direction

of

IBM

Software

Support.

See

“Formatting

trace

data

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

271

for

information

on

formatting

trace

data.

Customizing

the

JDBC

profile

(optional)

The

JDBC

profile

that

DB2

provides

is

sufficient

for

most

installations.

If

you

need

additional

resources

for

JDBC,

you

can

run

the

db2genJDBC

utility

to

customize

JDBC

resources.

Syntax

��

db2genJDBC

DSNJDBC

-

pgmname=

program-name

150

-

statements=

integer

�

�

db2jdbc.cursors

-

cursors=

cursor-properties-file

5

-

calls=

integer

��

Parameter

descriptions

-pgmname

Specifies

the

JDBC

program

name.

This

name

must

be

seven

or

fewer

characters

in

length.

The

default

is

DSNJDBC.

-statements

Specifes

the

number

of

sections

to

reserve

in

the

DBRMs

for

JDBC

statements

and

prepared

statements

for

non-result

set

processing.

The

default

is

150.

For

CICS

applications,

you

should

not

use

the

default

value.

See

“Special

considerations

for

CICS

applications,”

on

page

273

for

more

information.

-cursors

Specifies

the

name

of

the

cursor

properties

file.

The

default

is

db2jdbc.cursors.

The

file

name

must

be

either

the

fully-qualified

file

name,

or

the

file

name

relative

to

the

current

working

directory.

The

cursor

properties

file

must

be

located

in

a

directory

that

is

specified

in

the

CLASSPATH

environment

variable,

described

in

“Setting

environment

variables

for

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

236.

If

you

do

not

use

the

default

cursor

properties

file,

you

need

to

modify

the

contents

of

the

file

before

you

run

db2genJDBC.

The

cursor

properties

file

defines

cursors

that

DB2

uses

to

retrieve

rows

from

JDBC

ResultSets.

You

can

customize

the

cursor

properties

file

to

modify

the

number

of

DB2

cursors

available

for

JDBC

and

to

control

cursor

names.

The

default

cursor

properties

file

defines

100

cursors

with

the

WITH

HOLD

attribute,

and

100

cursors

without

the

WITH

HOLD

attribute.

For

CICS

applications,

you

should

not

use

the

default

value.

See

“Special

considerations

for

CICS

applications,”

on

page

273

for

more

information.

-calls

Specifes

the

number

of

sections

to

reserve

in

the

DBRMs

for

JDBC

callable

statements

for

non-result

set

processing.

The

default

is

5.

240

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

|
|
|
|
|
|
|

Output

The

db2genJDBC

utility

creates

four

DBRMs

and

a

JDBC

serialized

profile.

The

JDBC

profile

must

be

located

in

the

directory

that

is

specified

in

the

CLASSPATH

environment

variable.

The

JDBC

profile

name

is

in

the

following

format:

program-name_JDBCProfile.ser

Binding

the

DBRMs

Customize

and

run

job

DSNTJJCL

to

bind

the

JDBC

DBRMs

into

packages

and

bind

the

packages

into

the

DSNJDBC

plan.

DSNTJJCL

is

shipped

in

the

DB2

DSN810.SDSNSAMP

data

set.

If

you

did

not

run

the

db2genJDBC

utility,

the

JDBC

DBRMs

are

in

the

DB2

DSN810.SDSNDBRM

data

set.

If

you

ran

the

db2genJDBC

utility,

these

DBRMs

are

in

the

data

set

whose

name

you

specified

for

the

DB2SQLJDBRMLIB

property.

The

DBRM

names

and

isolation

levels

are

shown

in

Table

48.

program-name

is

DSNJDBC,

or

the

name

that

you

specified

for

the

-pgmname

parameter

when

you

ran

db2genJDBC.

The

default

transaction

level

for

the

DSNJDBC

plan

is

CS.

Table

48.

JDBC

DBRM

names

and

package

isolation

levels

DBRM

name

Isolation

level

program-name1

UR

program-name2

CS

program-name3

RS

program-name4

RR

The

default

transaction

level

for

the

DSNJDBC

plan

is

CS.

To

change

the

transaction

level

of

a

connection

in

a

JDBC

program,

use

the

Connection.setTransactionIsolation

method.

For

SQLJ

applications,

you

need

to

include

the

JDBC

packages

in

every

SQLJ

application

plan.

Getting

started

using

the

sample

Java

applications

To

get

you

started

on

writing

your

own

JDBC

and

SQLJ

applications,

DB2

UDB

for

z/OS

provides

sample

JDBC

program

Sample01.java

and

sample

SQLJ

program

Sample02.sqlj.

The

sample

applications

are

designed

to

run

under

the

JDBC/SQLJ

Driver

for

OS/390.

Sample01.java

demonstrates

the

following

techniques:

v

Connecting

to

a

data

source

using

the

DriverManager

interface

v

Retrieving

data

using

the

ResultSet

interface

v

Processing

errors

using

the

DB2

UDB

for

z/OS-only

SQLException

interface

Sample02.sqlj

demonstrates

the

following

techniques:

v

Connecting

to

a

data

source

using

the

DriverManager

interface

v

Retrieving

data

using

a

named

iterator

v

Processing

errors

using

the

DB2

UDB

for

z/OS-only

SQLException

interface

Chapter

7.

Installing

JDBC

and

SQLJ

241

|
|
|

|
|

If

your

SQLJ

driver

is

installed

in

/usr/lpp/db2810,

you

can

find

Sample01.java

and

Sample02.sqlj

in

the

following

path:

/usr/lpp/db2810/samples

242

Application

Programming

Guide

and

Reference

for

Java™

Chapter

8.

JDBC

and

SQLJ

security

The

following

topics

contain

information

on

security

mechanisms

that

are

available

under

the

JDBC

drivers:

v

“Security

under

the

DB2

Universal

JDBC

Driver”

v

“User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver”

v

“User

ID-only

security

under

the

DB2

Universal

JDBC

Driver”

on

page

245

v

“Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver”

on

page

246

v

“Kerberos

security

under

the

DB2

Universal

JDBC

Driver”

on

page

247

v

“Security

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

250

Security

under

the

DB2

Universal

JDBC

Driver

When

you

use

the

DB2

Universal

JDBC

Driver,

you

choose

a

security

mechanism

by

specifying

a

value

for

the

securityMechanism

property.

You

can

set

this

property

in

one

of

the

following

ways:

v

If

you

use

the

DriverManager

interface,

set

securityMechanism

in

a

java.util.Properties

object

before

you

invoke

the

form

of

the

getConnection

method

that

includes

the

java.util.Properties

parameter.

v

If

you

use

the

DataSource

interface,

and

you

are

creating

and

deploying

your

own

DataSource

objects,

invoke

the

DataSource.setSecurityMechanism

method

after

you

create

a

DataSource

object.

Table

49

lists

the

security

mechanisms

that

the

DB2

Universal

JDBC

Driver

supports,

and

the

value

that

you

need

to

specify

for

the

securityMechanism

property

to

specify

each

security

mechanism.

The

default

security

mechanism

is

the

user

ID

and

password

mechanism.

Table

49.

Security

mechanisms

supported

by

the

DB2

Universal

JDBC

Driver

Security

mechanism

securityMechanism

property

value

User

ID

and

password

DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User

ID

only

DB2BaseDataSource.USER_ONLY_SECURITY

User

ID

and

encrypted

password

DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted

user

ID

and

encrypted

password

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Kerberos1

DB2BaseDataSource.KERBEROS_SECURITY

Note:

1.

Available

for

Universal

Driver

type

4

connectivity

only.

User

ID

and

password

security

under

the

DB2

Universal

JDBC

Driver

To

specify

user

ID

and

password

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

You

can

specify

the

user

ID

and

password

directly

in

the

DriverManager.getConnection

invocation.

For

example:

import

java.sql.*;

//

JDBC

base

...

String

id

=

"db2adm";

//

Set

user

ID

©

Copyright

IBM

Corp.

1998,

2004

243

String

pw

=

"db2adm";

//

Set

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

id,

pw);

//

Create

connection

Another

method

is

to

set

the

user

ID

and

password

directly

in

the

URL

string.

For

example:

import

java.sql.*;

//

JDBC

base

...

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose:user=db2adm;password=db2adm;";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url);

//

Create

connection

Alternatively,

you

can

set

the

user

ID

and

password

by

setting

the

user

and

password

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

Optionally,

you

can

set

the

securityMechanism

property

to

indicate

that

you

are

using

user

ID

and

password

security.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2®

implementation

of

JDBC

2.0

...

Properties

properties

=

new

java.util.Properties();

//

Create

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

and

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

connection

For

the

DataSource

interface:

you

can

specify

the

user

ID

and

password

directly

in

the

DataSource.getConnection

invocation.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Context

ctx=new

InitialContext();

//

Create

context

for

JNDI

DataSource

ds=(DataSource)ctx.lookup("jdbc/sampledb");

//

Get

DataSource

object

String

id

=

"db2adm";

//

Set

user

ID

String

pw

=

"db2adm";

//

Set

password

Connection

con

=

ds.getConnection(id,

pw);

//

Create

connection

Alternatively,

if

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID

and

password

by

invoking

the

DataSource.setUser

and

DataSource.setPassword

methods

after

you

create

the

DataSource

object.

Optionally,

you

can

invoke

the

DataSource.setSecurityMechanism

method

property

to

indicate

that

you

are

using

user

ID

and

password

security.

For

example:

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

//

Create

DB2SimpleDataSource

object

new

com.ibm.db2.jcc.DB2SimpleDataSource();

db2ds.setDriverType(4);

//

Set

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

server

name

244

Application

Programming

Guide

and

Reference

for

Java™

db2ds.setPortNumber(5021);

//

Set

port

number

db2ds.setUser("db2adm");

//

Set

user

ID

db2ds.setPassword("db2adm");

//

Set

password

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);

//

Set

security

mechanism

to

//

user

ID

and

password

Universal

Driver

type

2

connectivity

with

no

user

ID

or

password:

For

Universal

Driver

type

2

connectivity,

if

you

use

user

ID

and

password

security,

but

you

do

not

specify

a

user

ID

and

password,

DB2

uses

the

external

security

environment,

such

as

the

RACF

security

environment,

that

was

previously

established

for

the

user.

For

a

CICS®

connection,

you

cannot

specify

a

user

ID

or

password.

User

ID-only

security

under

the

DB2

Universal

JDBC

Driver

To

specify

user

ID

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

Set

the

user

ID

and

security

mechanism

by

setting

the

user

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2®

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

only

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID

and

security

mechanism

by

invoking

the

DataSource.setUser

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

DB2SimpleDataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setUser("db2adm");

//

Set

the

user

ID

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);

//

Set

security

mechanism

to

//

user

ID

only

Chapter

8.

JDBC

and

SQLJ

security

245

Encrypted

user

ID

security

or

encrypted

password

security

under

the

DB2

Universal

JDBC

Driver

If

you

use

encrypted

user

ID

security

or

encrypted

password

security

when

you

access

a

DB2®

for

z/OS™

server,

the

Java™

Cryptography

Extension,

IBMJCE

for

z/OS

needs

to

be

enabled

on

the

server.

The

Java

Cryptography

Extension

is

part

of

the

IBM®

Developer

Kit

for

OS/390®,

Java

2

Technology

Edition,

or

the

IBM

Developer

Kit

for

z/OS,

Java

2

Technology

Edition.

For

information

on

how

to

enable

IBMJCE,

go

to

this

URL

on

the

Web:

http://www.ibm.com/servers/eserver/zseries/software/java/aboutj2.html

To

specify

encrypted

user

ID

or

encrypted

password

security

for

a

JDBC

connection,

use

one

of

the

following

techniques.

For

the

DriverManager

interface:

Set

the

user

ID,

password,

and

security

mechanism

by

setting

the

user,

password,

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

user

ID

and

encrypted

password

security

mechanism:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

+

""));

//

Set

security

mechanism

to

//

user

ID

and

encrypted

password

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

you

can

set

the

user

ID,

password,

and

security

mechanism

by

invoking

the

DataSource.setUser,

DataSource.setPassword,

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example,

use

code

like

this

to

set

the

encrypted

user

ID

and

encrypted

password

security

mechanism:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setUser("db2adm");

//

Set

the

user

ID

db2ds.setPassword("db2adm");

//

Set

the

password

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY);

//

Set

security

mechanism

to

//

encrypted

user

ID

and

password

246

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Kerberos

security

under

the

DB2

Universal

JDBC

Driver

Kerberos

security

is

available

for

Universal

Driver

type

4

connectivity

only.

If

you

use

Kerberos

security

when

you

access

a

DB2®

for

z/OS™

server,

you

need

to

install

and

configure

the

following

products,

or

their

equivalents:

v

The

SecureWay®

Security

Server

for

z/OS

and

OS/390®

v

OS/390

SecureWay

Security

Server

Network

Authentication

and

Privacy

Service,

which

is

a

component

of

the

OS/390

SecureWay

Security

Server

This

is

the

IBM®

OS/390

implementation

of

Kerberos

Version

5.

For

more

information,

see

OS/390

SecureWay

Server

Network

Authentication

and

Privacy

Service

Administration.

You

also

need

to

enable

the

following

components

of

the

IBM

Developer

Kit

for

OS/390,

Java™

2

Technology

Edition,

or

the

IBM

Developer

Kit

for

z/OS,

Java

2

Technology

Edition:

v

Java

Cryptography

Extension

(IBMJCE)

for

OS/390

v

IBM

Java

Generic

Security

Service

(IBMJGSS)

v

Java

Authentication

and

Authorization

Service

(JAAS)

for

OS/390

For

information

on

how

to

enable

these

components,

go

to

this

URL

on

the

Web:

http://www.ibm.com/servers/eserver/zseries/software/java/aboutj2.html

There

are

three

ways

to

specify

Kerberos

security

for

a

connection:

v

With

a

user

ID

and

password

v

Without

a

user

ID

or

password

v

With

a

delegated

credential

Using

Kerberos

security

with

a

user

ID

and

password:

For

this

case,

Kerberos

uses

the

specified

user

ID

and

password

to

obtain

a

ticket-granting

ticket

(TGT)

that

lets

you

authenticate

to

the

DB2

server.

You

need

to

set

the

user,

password,

kerberosServerPrincipal,

and

securityMechanism

properties.

The

kerberosServerPrincipal

property

specifies

the

address

of

the

Kerberos

server

for

the

realm

in

which

the

client

is

registered.

For

the

DriverManager

interface:

Set

the

user

ID,

password,

Kerberos

server,

and

security

mechanism

by

setting

the

user,

password,

kerberosServerPrincipal,

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

with

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("user",

"db2adm");

//

Set

user

ID

for

the

connection

properties.put("password",

"db2adm");

//

Set

password

for

the

connection

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

Chapter

8.

JDBC

and

SQLJ

security

247

|

|

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setUser("db2adm");

//

Set

the

user

db2ds.setPassword("db2adm");

//

Set

the

password

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Using

Kerberos

security

with

no

user

ID

or

password:

For

this

case,

the

Kerberos

default

credentials

cache

must

contain

a

ticket-granting

ticket

(TGT)

that

lets

you

authenticate

to

the

DB2

server.

You

need

to

set

the

kerberosServerPrincipal

and

securityMechanism

properties.

For

the

DriverManager

interface:

Set

the

Kerberos

server

and

security

mechanism

by

setting

the

kerberosServerPrincipal

and

securityMechanism

properties

in

a

Properties

object,

and

then

invoking

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

without

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

248

Application

Programming

Guide

and

Reference

for

Java™

DB2DataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Using

Kerberos

security

with

a

delegated

credential

from

another

principal:

For

this

case,

you

authenticate

to

the

DB2

server

using

a

delegated

credential

that

another

principal

passes

to

you.

You

need

to

set

the

kerberosServerPrincipal,

gssCredential,

and

securityMechanism

properties.

For

the

DriverManager

interface:

Set

the

Kerberos

server,

delegated

credential,

and

security

mechanism

by

setting

the

kerberosServerPrincipal,

and

securityMechanism

properties

in

a

Properties

object.

Because

the

gssCredential

property

is

not

a

string,

you

cannot

use

the

Properties.put

method

to

set

it.

Instead,

use

the

DB2BaseDataSource.setGSSCredential

method.

Then

invoke

the

form

of

the

getConnection

method

that

includes

the

Properties

object

as

a

parameter.

For

example,

use

code

like

this

to

set

the

Kerberos

security

mechanism

without

a

user

ID

and

password:

import

java.sql.*;

//

JDBC

base

import

com.ibm.db2.jcc.*;

//

DB2

implementation

of

JDBC

2.0

...

Properties

properties

=

new

Properties();

//

Create

a

Properties

object

properties.put("kerberosServerPrincipal",

"kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

properties.put("gssCredential",delegatedCredential);

//

Set

the

delegated

credential

properties.put("securityMechanism",

new

String(""

+

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY

+

""));

//

Set

security

mechanism

to

//

Kerberos

String

url

=

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

//

Set

URL

for

the

data

source

Connection

con

=

DriverManager.getConnection(url,

properties);

//

Create

the

connection

For

the

DataSource

interface:

If

you

create

and

deploy

the

DataSource

object,

set

the

Kerberos

server,

delegated

credential,

and

security

mechanism

by

invoking

the

DataSource.setKerberosServerPrincipal,

DataSource.setGssCredential,

and

DataSource.setSecurityMechanism

methods

after

you

create

the

DataSource

object.

For

example:

DB2DataSource

db2ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

//

Create

the

DataSource

object

db2ds.setDriverType(4);

//

Set

the

driver

type

db2ds.setDatabaseName("san_jose");

//

Set

the

location

db2ds.setServerName("mvs1.sj.ibm.com");

//

Set

the

server

name

db2ds.setPortNumber(5021);

//

Set

the

port

number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

//

Set

the

Kerberos

server

db2ds.setGssCredential(delegatedCredential);

Chapter

8.

JDBC

and

SQLJ

security

249

//

Set

the

delegated

credential

db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

//

Set

security

mechanism

to

//

Kerberos

Security

under

the

JDBC/SQLJ

Driver

for

OS/390

This

topic

describes

the

security

model

for

the

JDBC/SQLJ

Driver

for

OS/390.

It

explains

how

authorization

IDs

are

determined

and

how

the

choice

of

DB2

attachment

facility

affects

security.

Determining

an

authorization

ID

with

the

JDBC/SQLJ

Driver

for

OS/390

With

the

JDBC/SQLJ

Driver

for

OS/390,

the

method

that

DB2

uses

to

determine

the

SQL

Authorization

ID

to

use

for

a

connection

depends

on

whether

you

provide

user

ID

and

password

values

for

the

connection.

v

If

you

do

not

provide

a

user

ID

and

password,

the

JDBC

driver

uses

the

external

security

environment

that

is

associated

with

the

thread

to

establish

the

DB2

authorization

ID.

v

If

you

provide

a

user

ID

and

password,

the

JDBC

driver

passes

these

values

to

DB2

for

validation,

and

uses

these

values

for

the

connection.

DB2

attachment

types

and

security

The

security

environment

(the

RACF

ACEE)

that

DB2

uses

to

establish

the

DB2

authorization

IDs

is

dependent

on

which

DB2

attachment

type

you

use.

JDBC

and

SQLJ

use

a

DB2

attachment

facility

to

communicate

with

DB2.

They

use

the

RRS

attachment

facility

(RRSAF)

or

the

CICS

attachment

facility.

All

attachment

types

support

multithreading,

that

is,

multiple,

concurrent

threads

(TCBs)

that

execute

within

a

single

process

(address

space).

In

a

multithreading

environment,

each

process

and

thread

can

have

its

own

unique

security

environment.

The

DB2

attachment

facility

that

you

select

determines

which

security

environment

DB2

uses

to

verify

the

DB2

authorization

IDs.

See

“Special

considerations

for

CICS

applications,”

on

page

273

for

information

on

using

the

CICS

attachment

facility.

The

DB2

RRS

attachment

facility

(RRSAF)

supports

multithreading,

and

applications

can

run

under

multiple

authorization

IDs.

If

you

use

the

RRSAF,

DB2

uses

a

task-level

security

environment,

if

present,

to

establish

the

DB2

authorization

IDs.

250

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|

Chapter

9.

JDBC

and

SQLJ

connection

pooling

support

Connection

pooling

is

part

of

JDBC

2.0

DataSource

support,

and

is

supported

by

the

JDBC/SQLJ

Driver

for

OS/390

and

the

DB2

Universal

JDBC

Driver.

For

the

DB2

Universal

JDBC

Driver

in

the

z/OS

environment,

connection

pooling

is

supported

for

Universal

Driver

type

2

connectivity

and

Universal

Driver

type

4

connectivity.

The

DB2

Universal

JDBC

Driver

and

the

JDBC/SQLJ

Driver

for

OS/390

provide

a

factory

of

pooled

connections

that

are

used

by

WebSphere

Application

Server

or

other

application

servers.

The

application

server

actually

does

the

pooling.

Connection

pooling

is

completely

transparent

to

a

JDBC

or

SQLJ

application.

Connection

pooling

is

a

framework

for

caching

physical

data

source

connections,

which

are

equivalent

to

DB2

threads.

When

JDBC

reuses

physical

data

source

connections,

the

expensive

operations

that

are

required

for

the

creation

and

subsequent

closing

of

java.sql.Connection

objects

are

minimized.

Without

connection

pooling,

each

java.sql.Connection

object

represents

a

physical

connection

to

the

database

server.

When

the

application

establishes

a

connection

to

a

data

source,

DB2

creates

a

new

physical

connection

to

the

data

source.

When

the

application

calls

the

java.sql.Connection.close

method,

DB2

terminates

the

physical

connection

to

the

data

source.

In

contrast,

with

connection

pooling,

a

java.sql.Connection

object

is

a

temporary,

logical

representation

of

a

physical

data

source

connection.

The

physical

data

source

connection

can

be

serially

reused

by

logical

java.sql.Connection

instances.

The

application

can

use

the

logical

java.sql.Connection

object

in

exactly

the

same

manner

as

it

uses

a

java.sql.Connection

object

when

there

is

no

connection

pooling

support.

With

connection

pooling,

when

a

JDBC

application

invokes

the

DataSource.getConnection

method,

the

data

source

determines

whether

an

appropriate

physical

connection

exists.

If

an

appropriate

physical

connection

exists,

the

data

source

returns

a

java.sql.Connection

instance

to

the

application.

When

the

JDBC

application

invokes

the

java.sql.Connection.close

method,

JDBC

does

not

close

the

physical

data

source

connection.

Instead,

JDBC

closes

only

JDBC

resources,

such

as

Statement

or

ResultSet

objects.

The

data

source

returns

the

physical

connection

to

the

connection

pool

for

reuse.

©

Copyright

IBM

Corp.

1998,

2004

251

252

Application

Programming

Guide

and

Reference

for

Java™

Chapter

10.

Universal

Driver

type

4

connectivity

JDBC

and

SQLJ

distributed

transaction

support

The

DB2

Universal

JDBC

Driver

in

the

z/OS

environment

supports

distributed

transaction

management

when

you

use

Universal

Driver

type

4

connectivity.

This

support

implements

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

Java

Transaction

Service

(JTS)

and

Java

Transaction

API

(JTA)

specifications,

conforms

to

the

X/Open

standard

for

global

transactions

(Distributed

Transaction

Processing:

The

XA

Specification,

available

from

www.opengroup.org).

DB2

Universal

JDBC

Driver

distributed

transaction

support

lets

Enterprise

Java

Beans

(EJBs)

and

Java

servlets

that

run

under

WebSphere

Application

Server

Version

5.01

and

above

participate

in

a

distributed

transaction

system.

A

distributed

transaction

system

consists

of

a

resource

manager,

a

transaction

manager,

and

transactional

applications.

Table

50

lists

the

products

and

programs

in

the

z/OS

environment

that

provide

those

components.

Table

50.

Components

of

a

distributed

transaction

system

on

DB2

UDB

for

z/OS

Distributed

transaction

system

component

Component

function

provided

by

Resource

manager

DB2

UDB

for

z/OS

Transaction

manager

WebSphere

Application

Server

or

another

application

server

Transactional

applications

JDBC

or

SQLJ

applications

Your

client

application

programs

that

run

under

the

DB2

Universal

JDBC

Driver

can

use

distributed

transaction

support

in

DB2

UDB

for

OS/390

and

z/OS

Version

7

and

DB2

UDB

for

z/OS

Version

8.in

DB2

UDB

for

OS/390

and

z/OS

Version

7.

DB2

UDB

for

z/OS

Version

8

servers

include

native

XA

mode

support.

However,

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers

do

not

have

native

XA

mode

support,

so

the

DB2

Universal

JDBC

Driver

emulates

the

XA

mode

support

using

the

existing

DB2

DRDA

two-phase

commit

protocol.

This

XA

mode

emulation

uses

a

DB2

table

named

SYSIBM.INDOUBT

to

store

information

about

indoubt

transactions.

DB2

uses

a

package

named

T4XAIndbtPkg

to

perform

SQL

operations

on

SYSIBM.INDOUBT.

If

your

JDBC

or

SQLJ

applications

use

distributed

transactions,

and

those

applications

connect

to

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers,

you

need

to

run

the

DB2T4XAIndoubtUtil

utility

at

those

servers

to

create

the

SYSIBM.INDOUBT

table

and

the

T4XAIndbtPkg

package.

You

should

never

modify

the

SYSIBM.INDOUBT

table

manually.

See

“Enabling

distributed

transactions

that

include

DB2

UDB

for

OS/390

and

z/OS

Version

7

servers”

on

page

228

for

information

on

running

the

DB2T4XAIndoubtUtil

utility.

In

JDBC

or

SQLJ

applications,

distributed

transactions

are

supported

for

connections

that

are

established

using

the

DataSource

interface.

A

connection

is

normally

established

by

the

application

server.

The

best

way

to

demonstrate

distributed

transactions

is

to

contrast

them

with

local

transactions.

With

local

transactions,

a

JDBC

application

makes

changes

to

a

database

permanent

and

indicates

the

end

of

a

unit

of

work

in

one

of

the

following

ways:

©

Copyright

IBM

Corp.

1998,

2004

253

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|

||

||

||

||
|

||
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

v

By

calling

tbe

Connection.commit

or

Connection.rollback

methods

after

executing

one

or

more

SQL

statements

v

By

calling

the

Connection.setAutoCommit(true)

method

at

the

beginning

of

the

application

to

commit

changes

after

every

SQL

statement

Figure

65

outlines

code

that

executes

local

transactions.

In

contrast,

applications

that

participate

in

distributed

transactions

cannot

call

the

Connection.commit,

Connection.rollback,

or

Connection.setAutoCommit(true)

methods

within

the

distributed

transaction.

With

distributed

transactions,

the

Connection.commit

or

Connection.rollback

methods

do

not

indicate

transaction

boundaries.

Instead,

your

applications

let

the

application

server

manage

transaction

boundaries.

Distributed

transactions

typically

involve

multiple

connections

to

the

same

data

source

or

different

data

sources,

which

can

include

data

sources

from

different

manufacturers.

Figure

66

demonstrates

an

application

that

uses

distributed

transactions.

While

the

code

in

the

example

is

running,

the

application

server

is

also

executing

other

EJBs

that

are

part

of

this

same

distributed

transaction.

When

all

EJBs

have

called

utx.commit(),

the

entire

distributed

transaction

is

committed

by

the

application

server.

If

any

of

the

EJBs

are

unsuccessful,

the

application

server

rolls

back

all

the

work

done

by

all

EJBs

that

are

associated

with

the

distributed

transaction.

Figure

67

on

page

255

illustrates

a

program

that

uses

JTA

methods

to

execute

a

distributed

transaction.

This

program

acts

as

the

transaction

manager

and

a

transactional

application.

Two

connections

to

two

different

data

sources

do

SQL

work

under

a

single

distributed

transaction.

con1.setAutoCommit(false);

//

Set

autocommit

off

//

execute

some

SQL

...

con1.commit();

//

Commit

the

transaction

//

execute

some

more

SQL

...

con1.rollback();

//

Roll

back

the

transaction

con1.setAutoCommit(true);

//

Enable

commit

after

every

SQL

statement

...

//

Execute

some

more

SQL,

which

is

automatically

committed

after

//

every

SQL

statement.

Figure

65.

Example

of

a

local

transaction

javax.transaction.UserTransaction

utx;

//

Use

the

begin

method

on

a

UserTransaction

object

to

indicate

//

the

beginning

of

a

distributed

transaction.

utx.begin();

...

//

Execute

some

SQL

with

one

Connection

object.

//

Do

not

call

Connection

methods

commit

or

rollback.

...

//

Use

the

commit

method

on

the

UserTransaction

object

to

//

drive

all

transaction

branches

to

commit

and

indicate

//

the

end

of

the

distributed

transaction.

utx.commit();

...

Figure

66.

Example

of

a

distributed

transaction

under

an

application

server

254

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

class

XASample

{

javax.sql.XADataSource

xaDS1;

javax.sql.XADataSource

xaDS2;

javax.sql.XAConnection

xaconn1;

javax.sql.XAConnection

xaconn2;

javax.transaction.xa.XAResource

xares1;

javax.transaction.xa.XAResource

xares2;

java.sql.Connection

conn1;

java.sql.Connection

conn2;

public

static

void

main

(String

args

[])

throws

java.sql.SQLException

{

XASample

xat

=

new

XASample();

xat.runThis(args);

}

//

As

the

transaction

manager,

this

program

supplies

the

global

//

transaction

ID

and

the

branch

qualifier.

The

global

//

transaction

ID

and

the

branch

qualifier

must

not

be

//

equal

to

each

other,

and

the

combination

must

be

unique

for

//

this

transaction

manager.

public

void

runThis(String[]

args)

{

byte[]

gtrid

=

new

byte[]

{

0x44,

0x11,

0x55,

0x66

};

byte[]

bqual

=

new

byte[]

{

0x00,

0x22,

0x00

};

int

rc1

=

0;

int

rc2

=

0;

try

{

javax.naming.InitialContext

context

=

new

javax.naming.InitialContext();

/*

*

Note

that

javax.sql.XADataSource

is

used

instead

of

a

specific

*

driver

implementation

such

as

com.ibm.db2.jcc.DB2XADataSource,

*

which

can

be

used

only

if

this

is

a

DB2

connection.

*/

xaDS1

=

(javax.sql.XADataSource)context.lookup("checkingAccounts");

xaDS2

=

(javax.sql.XADataSource)context.lookup("savingsAccounts");

//

The

XADatasource

contains

the

user

ID

and

password.

//

Get

the

XAConnection

object

from

each

XADataSource

xaconn1

=

xaDS1.getXAConnection();

xaconn2

=

xaDS2.getXAConnection();

//

Get

the

java.sql.Connection

object

from

each

XAConnection

conn1

=

xaconn1.getConnection();

conn2

=

xaconn2.getConnection();

//

Get

the

XAResource

object

from

each

XAConnection

xares1

=

xaconn1.getXAResource();

xares2

=

xaconn2.getXAResource();

Figure

67.

Example

of

a

distributed

transaction

that

uses

the

JTA

(Part

1

of

4)

Chapter

10.

Universal

Driver

type

4

connectivity

JDBC

and

SQLJ

distributed

transaction

support

255

|

//

Create

the

Xid

object

for

this

distributed

transaction.

//

This

example

uses

the

com.ibm.db2.jcc.DB2Xid

implementation

//

of

the

Xid

interface.

This

Xid

can

be

used

with

any

JDBC

driver

//

that

supports

JTA.

javax.transaction.xa.Xid

xid1

=

new

com.ibm.db2.jcc.DB2Xid(100,

gtrid,

bqual);

//

Start

the

distributed

transaction

on

the

two

connections.

//

The

two

connections

do

NOT

need

to

be

started

and

ended

together.

//

They

might

be

done

in

different

threads,

along

with

their

SQL

operations.

xares1.start(xid1,

javax.transaction.xa.XAResource.TMNOFLAGS);

xares2.start(xid1,

javax.transaction.xa.XAResource.TMNOFLAGS);

...

//

Do

the

SQL

operations

on

connection

1.

//

Do

the

SQL

operations

on

connection

2.

...

//

Now

end

the

distributed

transaction

on

the

two

connections.

xares1.end(xid1,

javax.transaction.xa.XAResource.TMSUCCESS);

xares2.end(xid1,

javax.transaction.xa.XAResource.TMSUCCESS);

//

If

connection

2

work

had

been

done

in

another

thread,

//

a

thread.join()

call

would

be

needed

here

to

wait

until

the

//

connection

2

work

is

done.

try

{

//

Now

prepare

both

branches

of

the

distributed

transaction.

//

Both

branches

must

prepare

successfully

before

changes

//

can

be

committed.

//

If

the

distributed

transaction

fails,

an

XAException

is

thrown.

rc1

=

xares1.prepare(xid1);

if(rc1

==

javax.transaction.xa.XAResource.XA_OK)

{

//

Prepare

was

successful.

Prepare

the

second

connection.

rc2

=

xares2.prepare(xid1);

if(rc2

==

javax.transaction.xa.XAResource.XA_OK)

{

//

Both

connections

prepared

successfully

and

neither

was

read-only.

xares1.commit(xid1,

false);

xares2.commit(xid1,

false);

}

else

if(rc2

==

javax.transaction.xa.XAException.XA_RDONLY)

{

//

The

second

connection

is

read-only,

so

just

commit

the

//

first

connection.

xares1.commit(xid1,

false);

}

}

else

if(rc1

==

javax.transaction.xa.XAException.XA_RDONLY)

{

//

SQL

for

the

first

connection

is

read-only

(such

as

a

SELECT).

//

The

prepare

committed

it.

Prepare

the

second

connection.

rc2

=

xares2.prepare(xid1);

if(rc2

==

javax.transaction.xa.XAResource.XA_OK)

{

//

The

first

connection

is

read-only

but

the

second

is

not.

//

Commit

the

second

connection.

xares2.commit(xid1,

false);

}

else

if(rc2

==

javax.transaction.xa.XAException.XA_RDONLY)

{

//

Both

connections

are

read-only,

and

both

already

committed,

//

so

there

is

nothing

more

to

do.

}

}

}

Figure

67.

Example

of

a

distributed

transaction

that

uses

the

JTA

(Part

2

of

4)

256

Application

Programming

Guide

and

Reference

for

Java™

|

catch

(javax.transaction.xa.XAException

xae)

{

//

Distributed

transaction

failed,

so

roll

it

back.

//

Report

XAException

on

prepare/commit.

System.out.println("Distributed

transaction

prepare/commit

failed.

"

+

"Rolling

it

back.");

System.out.println("XAException

error

code

=

"

+

xae.errorCode);

System.out.println("XAException

message

=

"

+

xae.getMessage());

xae.printStackTrace();

try

{

xares1.rollback(xid1);

}

catch

(javax.transaction.xa.XAException

xae1)

{

//

Report

failure

of

rollback.

System.out.println("distributed

Transaction

rollback

xares1

failed");

System.out.println("XAException

error

code

=

"

+

xae1.errorCode);

System.out.println("XAException

message

=

"

+

xae1.getMessage());

}

try

{

xares2.rollback(xid1);

}

catch

(javax.transaction.xa.XAException

xae2)

{

//

Report

failure

of

rollback.

System.out.println("distributed

Transaction

rollback

xares2

failed");

System.out.println("XAException

error

code

=

"

+

xae2.errorCode);

System.out.println("XAException

message

=

"

+

xae2.getMessage());

}

}

try

{

conn1.close();

xaconn1.close();

}

catch

(Exception

e)

{

System.out.println("Failed

to

close

connection

1:

"

+

e.toString());

e.printStackTrace();

}

try

{

xaconn2.close();

conn2.close();

}

catch

(Exception

e)

{

System.out.println("Failed

to

close

connection

2:

"

+

e.toString());

e.printStackTrace();

}

}

Figure

67.

Example

of

a

distributed

transaction

that

uses

the

JTA

(Part

3

of

4)

Chapter

10.

Universal

Driver

type

4

connectivity

JDBC

and

SQLJ

distributed

transaction

support

257

|

Recommendation:

For

better

performance,

complete

a

distributed

transaction

before

you

start

another

distributed

or

local

transaction.

catch

(java.sql.SQLException

sqe)

{

System.out.println("SQLException

caught:

"

+

sqe.getMessage());

sqe.printStackTrace();

}

catch

(javax.transaction.xa.XAException

xae)

{

System.out.println("XA

error

is

"

+

xae.getMessage());

xae.printStackTrace();

}

catch

(javax.naming.NamingException

nme)

{

System.out.println("

Naming

Exception:

"

+

nme.getMessage());

}

}

}

Figure

67.

Example

of

a

distributed

transaction

that

uses

the

JTA

(Part

4

of

4)

258

Application

Programming

Guide

and

Reference

for

Java™

|
|

Chapter

11.

JDBC

and

SQLJ

global

transaction

support

The

JDBC/SQLJ

2.0

Driver

for

OS/390

and

Universal

Driver

type

2

connectivity

on

DB2

UDB

for

z/OS

include

global

transaction

support.

JDBC

and

SQLJ

global

transaction

support

lets

Enterprise

Java

Beans

(EJB)

and

Java

servlets

that

run

under

WebSphere

Application

Server

Version

4.0

or

later

access

DB2

UDB

for

z/OS

relational

data

within

global

transactions.

WebSphere

Application

Server

provides

the

environment

to

deploy

EJBs

and

servlets,

and

RRS

provides

the

transaction

management.

You

can

use

global

transactions

in

JDBC

or

SQLJ

applications.

Global

transactions

are

supported

for

connections

that

are

established

using

the

DriverManager

or

the

DataSource

interface.

The

best

way

to

demonstrate

global

transactions

is

to

contrast

them

with

local

transactions.

As

Figure

68

shows,

with

local

transactions,

you

call

the

commit

or

rollback

methods

of

the

Connection

class

to

make

the

changes

to

the

database

permanent

and

indicate

the

end

of

each

unit

or

work.

Alternatively,

you

can

use

the

setAutoCommit(true)

method

to

perform

a

commit

operation

after

every

SQL

statement.

In

contrast,

applications

cannot

call

the

commit,

rollback,

or

setAutoCommit(true)

methods

on

the

Connection

object

when

the

applications

are

in

a

global

transaction.

With

global

transactions,

the

commit

or

rollback

methods

on

the

Connection

object

do

not

indicate

transaction

boundaries.

Instead,

your

applications

let

WebSphere

manage

transaction

boundaries.

Alternatively,

you

can

use

DB2-customized

Java

Transaction

API

(JTA)

interfaces

to

indicate

the

boundaries

of

transactions.

Although

DB2

UDB

for

z/OS

does

not

implement

the

JTA

specification,

the

methods

for

delimiting

transaction

boundaries

are

available

with

the

JDBC

2.0

driver.

Figure

69

on

page

260

demonstrates

the

use

of

the

JTA

interfaces

to

indicate

global

transaction

boundaries.

con1.setAutoCommit(false);

//

Set

autocommit

off

//

execute

some

SQL

...
con1.commit();

//

Commit

the

transaction

//

execute

some

more

SQL

...
con1.rollback();

//

Roll

back

the

transaction

con1.setAutoCommit(true);

//

Enable

commit

after

every

SQL

statement

...

Figure

68.

Example

of

a

local

transaction

©

Copyright

IBM

Corp.

1998,

2004

259

When

you

run

a

multi-threaded

client

under

WebSphere,

a

transaction

can

span

multiple

threads.

This

situation

might

occur

in

a

Java

servlet.

An

application

that

runs

in

this

environment

needs

to

perform

some

SQL

on

each

Connection

object

before

the

application

passes

the

object

to

another

thread.

Figure

70

illustrates

this

point.

javax.transaction.UserTransaction

utx;

//

Use

the

begin

method

on

a

UserTransaction

object

to

indicate

//

the

beginning

of

a

global

transaction.

utx.begin();

...
//

Execute

some

SQL

with

one

Connection

object.

//

Do

not

call

Connection

methods

commit

or

rollback.

...
//

Use

the

commit

method

on

the

UserTransaction

object

to

//

drive

all

transaction

branches

to

commit

and

indicate

//

the

end

of

the

global

transaction.

utx.commit();

...

Figure

69.

Example

of

a

global

transaction

javax.transaction.UserTransaction

utx;

//

Use

the

begin

method

on

a

UserTransaction

object

to

indicate

//

the

beginning

of

a

global

transaction.

utx.begin();

...
//

Obtain

two

JDBC

Connections

from

DataSource

ds

c1

=

ds.getConnection();

c2

=

ds.getConnection();

...
//

Create

a

thread

for

each

Connection

object

ThreadClass1

tc1

=

new

ThreadClass1(c1);

ThreadClass2

tc2

=

new

ThreadClass1(c2);

Thread

t1

=

new

Thread(tc1);

Thread

t2

=

new

Thread(tc2);

//

Execute

some

SQL

on

each

Connection

object

to

associate

//

the

threads

with

the

global

transaction

...
//

Start

the

two

threads

that

will

use

the

Connection

objects

to

do

SQL

t1.start();

t2.start();

...
//

Use

the

commit

method

on

the

UserTransaction

object

to

//

drive

all

transaction

branches

to

commit

and

indicate

//

the

end

of

the

global

transaction.

utx.commit();

...

Figure

70.

Example

of

a

global

transaction

in

a

multi-threaded

environment

260

Application

Programming

Guide

and

Reference

for

Java™

Chapter

12.

JDBC/SQLJ

Driver

for

OS/390

multiple

z/OS

context

support

The

JDBC/SQLJ

Driver

for

OS/390

has

multiple

z/OS

context

support.

The

z/OS

context

includes

the

application’s

logical

connection

to

the

data

source

and

the

associated

internal

DB2

connection

information

that

lets

the

application

direct

its

operations

to

a

data

source.

For

JDBC

or

SQLJ

applications,

a

context

is

equivalent

to

a

DB2

thread.

Connecting

when

multiple

z/OS

context

support

is

not

enabled

A

context

is

always

established

when

a

Java

thread

creates

its

first

java.sql.Connection

object.

If

support

for

multiple

contexts

is

not

enabled,

then

subsequent

java.sql.Connection

objects

created

by

a

Java

thread

share

that

single

context.

Although

multiple

connections

can

share

a

single

context,

only

one

connection

can

have

an

active

transaction

at

any

time.

If

there

is

an

active

transaction

on

a

connection,

a

COMMIT

or

ROLLBACK

must

be

issued

before

the

Java

thread

can

use

or

create

another

connection

object.

Without

multiple

context

support:

v

There

can

be

one

or

more

Java

threads,

any

of

which

can

issue

JDBC

or

SQLJ

calls.

v

All

java.sql.Connection

objects

must

be

explicitly

closed

by

the

application

Java

thread

that

created

the

connection

object.

v

Multiple

java.sql.Connection

objects

can

be

created

by

a

single

Java

thread

if

the

application

uses

the

connections

serially.

The

application

must

not

create

or

use

a

different

connection

object

on

the

Java

thread

if

the

current

connection

is

not

on

a

transaction

boundary.

Multiple

connections

cannot

create

concurrent

units

of

work.

v

When

more

than

one

connection

is

opened,

those

connections

are

associated

with

the

same

DB2

thread.

Returning

from

the

current

connection

to

a

previous

connection

might

not

return

you

to

the

DB2

location

that

the

previous

connection

was

originally

associated

with.

Previous

connections

become

associated

with

the

location

of

the

most

recently

created

connection.

v

A

Java

thread

can

use

a

java.sql.Connection

object

only

when

the

Java

thread

creates

the

java.sql.Connection

object.

v

WebSphere™

Application

Server

connection

pooling

using

the

″com.ibm.servlet.connmgr″

package

is

not

possible.

Connecting

when

multiple

z/OS

context

support

is

enabled

With

multiple

z/OS

context

support

enabled,

each

java.sql.Connection

object

is

related

to

a

unique

context

(DB2

thread).

Under

this

model,

a

single

Java

thread

(TCB)

can

have

multiple,

concurrent

connections,

each

with

its

own

independent

transaction.

The

DB2

JDBC

and

SQLJ

multiple

context

support

requires:

v

Use

of

the

DB2

RRSAF

attachment

facility

v

z/OS

Context

Services

With

multiple

z/OS

context

support:

v

There

can

be

one

or

more

Java

threads,

any

of

which

can

issue

JDBC

or

SQLJ

calls.

©

Copyright

IBM

Corp.

1998,

2004

261

v

The

Java

threads

can

create

multiple

java.sql.Connection

objects

(and

derived

objects),

each

of

which:

–

Can

exist

concurrently

with

other

java.sql.Connection

objects.

–

Has

its

own

transaction

scope

that

is

independent

from

all

other

java.sql.Connection

objects.

–

Does

not

need

to

be

on

a

transaction

boundary

for

a

Java

thread

to

create

or

use

different

connections.

v

The

java.sql.Connection

objects

can

be

shared

between

Java

threads.

However,

the

actions

of

one

Java

thread

on

a

given

connection

object

are

also

visible

to

all

of

the

Java

threads

using

that

connection.

Also,

the

JDBC/SQLJ

application

is

responsible

for

ensuring

proper

serialization

when

sharing

connection

objects

between

threads.

v

Although

it

is

recommended

that

all

java.sql.Statement

and

java.sql.Connection

objects

be

explicitly

closed

by

the

application,

it

is

not

required.

v

WebSphere

Application

Server

connection

pooling

using

the

com.ibm.servlet.connmgr

package

is

supported

for

JDBC

connections

only.

Enabling

multiple

z/OS

context

support

The

DB2SQLJMULTICONTEXT

parameter

in

the

run-time

properties

file

enables

multiple

context

support.

See

“The

SQLJ/JDBC

run-time

properties

file”

on

page

236

for

information

about

setting

the

DB2SQLJMULTICONTEXT

parameter.

Multiple

context

performance

Setting

the

DB2SQLJMULTICONTEXT

parameter

to

YES

enhances

SQLJ

and

JDBC

performance.

Connection

sharing

Connection

sharing

occurs

whenever

a

Java

thread

(TCB)

attempts

to

use

a

java.sql.Connection

object,

or

any

object

derived

from

a

connection,

that

the

Java

thread

did

not

create.

One

application

of

connection

sharing

is

for

cleanup

of

connection

objects.

Under

the

Java

Virtual

Machine

(JVM)

on

z/OS,

cleanup

of

connection

objects

is

usually

performed

by

a

JVM

finalizer

thread,

rather

than

the

Java

thread

that

created

the

object.

Connection

sharing

is

supported

only

in

a

multiple

context

environment.

262

Application

Programming

Guide

and

Reference

for

Java™

Chapter

13.

Diagnosing

JDBC

and

SQLJ

problems

The

sections

that

follow

contain

information

on

diagnosing

JDBC

and

SQLJ

problems.

Diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

Universal

JDBC

Driver

The

following

topics

contain

information

on

diagnosing

JDBC

and

SQLJ

problems

under

the

DB2

Universal

JDBC

Driver:

v

“JDBC

and

SQLJ

problem

diagnosis

with

the

DB2

Universal

JDBC

Driver”

v

“Example

of

tracing

under

the

DB2

Universal

JDBC

Driver”

on

page

265

v

“Formatting

trace

data

for

C/C++

native

driver

code

with

the

DB2

Universal

JDBC

Driver”

on

page

269

v

“Diagnosing

SQLJ

problems

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

270

JDBC

and

SQLJ

problem

diagnosis

with

the

DB2

Universal

JDBC

Driver

To

obtain

data

for

diagnosing

SQLJ

or

JDBC

problems

with

the

DB2

Universal

JDBC

Driver,

collect

trace

data

and

run

utilities

that

format

the

trace

data.

You

should

run

the

trace

and

diagnostic

utilities

only

under

the

direction

of

IBM®

software

support.

Collecting

JDBC

trace

data:

Use

one

of

the

following

procedures

to

start

the

trace:

Procedure

1:

For

Universal

Driver

type

2

connectivity,

the

recommended

method

is

to

start

the

trace

by

setting

the

db2.jcc.override.traceFile

property

and

the

db2.jcc.t2zosTraceFile

property

in

the

DB2

Universal

JDBC

Driver

global

properties

file.

See

“Customizing

the

DB2

Universal

JDBC

Driver

global

properties

file”

on

page

219

for

information

on

how

to

do

this.

Procedure

2:

1.

If

you

use

the

DataSource

interface

to

connect

to

a

data

source,

invoke

the

DB2BaseDataSource.setTraceLevel

method

to

set

the

type

of

tracing

that

you

need.

The

default

trace

level

is

TRACE_ALL.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

information

on

how

to

specify

more

than

one

type

of

tracing.

2.

Invoke

the

DB2BaseDataSource.setJccLogWriter

method

to

specify

the

trace

destination

and

turn

the

trace

on.

Procedure

3:

If

you

use

the

DataSource

interface

to

connect

to

a

data

source,

invoke

the

javax.sql.DataSource.setLogWriter

method

to

turn

the

trace

on.

With

this

method,

TRACE_ALL

is

the

only

available

trace

level.

If

you

use

the

DriverManager

interface

to

connect

to

a

data

source,

follow

this

procedure

to

start

the

trace.

1.

Invoke

the

DriverManager.getConnection

method

with

the

traceLevel

property

set

in

the

info

parameter

or

url

parameter

for

the

type

of

tracing

that

you

need.

©

Copyright

IBM

Corp.

1998,

2004

263

The

default

trace

level

is

TRACE_ALL.

See

“Properties

for

the

DB2

Universal

JDBC

Driver”

on

page

106

for

information

on

how

to

specify

more

than

one

type

of

tracing.

2.

Invoke

the

DriverManager.setLogWriter

method

to

specify

the

trace

destination

and

turn

the

trace

on.

After

a

connection

is

established,

you

can

turn

the

trace

off

or

back

on,

change

the

trace

destination,

or

change

the

trace

level

with

the

DB2Connection.setJccLogWriter

method.

To

turn

the

trace

off,

set

the

logWriter

value

to

null.

The

logWriter

property

is

an

object

of

type

java.io.PrintWriter.

If

your

application

cannot

handle

java.io.PrintWriter

objects,

you

can

use

the

traceFile

property

to

specify

the

destination

of

the

trace

output.

To

use

the

traceFile

property,

set

the

logWriter

property

to

null,

and

set

the

traceFile

property

to

the

name

of

the

file

to

which

the

driver

writes

the

trace

data.

This

file

and

the

directory

in

which

it

resides

must

be

writable.

If

the

file

already

exists,

the

driver

overwrites

it.

Procedure

4:

If

you

are

using

the

DriverManager

interface,

specify

the

traceFile

and

traceLevel

properties

as

part

of

the

URL

when

you

load

the

driver.

For

example:

String

url

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose"

+

":traceFile=/u/db2p/jcctrace;"

+

"traceLevel=com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS;";

Trace

example

program:

For

a

complete

example

of

a

program

for

tracing

under

the

DB2

Universal

JDBC

Driver,

see

“Example

of

tracing

under

the

DB2

Universal

JDBC

Driver”

on

page

265.

Collecting

SQLJ

trace

data:

To

collect

trace

data

to

diagnose

problems

during

the

SQLJ

customization

or

bind

process,

specify

the

-tracelevel

and

-tracefile

options

when

you

run

the

db2sqljcustomize

or

db2sqljbind

bind

utility.

Formatting

information

about

an

SQLJ

serialized

profile:

The

profp

utility

formats

information

about

each

SQLJ

clause

in

a

serialized

profile.

The

format

of

the

profp

utility

is:

��

profp

serialized-profile-name

��

Run

the

profp

utility

on

the

serialized

profile

for

the

connection

in

which

the

error

occurs.

If

an

exception

is

thrown,

a

Java™

stack

trace

is

generated.

You

can

determine

which

serialized

profile

was

in

use

when

the

exception

was

thrown

from

the

stack

trace.

Formatting

information

about

an

SQLJ

customized

serialized

profile:

264

Application

Programming

Guide

and

Reference

for

Java™

The

db2sqljprint

utility

formats

information

about

each

SQLJ

clause

in

a

serialized

profile

that

is

customized

for

the

DB2

Universal

JDBC

Driver.

The

format

of

the

db2sqljprint

utility

is:

��

db2sqljprint

customized-serialized-profile-name

��

Run

the

db2sqljprint

utility

on

the

customized

serialized

profile

for

the

connection

in

which

the

error

occurs.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

The

following

example

shows

a

class

for

establishing

a

connection

and

gathering

and

displaying

trace

data

under

the

DB2

Universal

JDBC

Driver.

The

class

includes

a

method

for

the

DriverManager

interface

and

a

method

for

the

DataSource

interface.

public

class

TraceExample

{

public

static

void

main(String[]

args)

{

sampleConnectUsingSimpleDataSource();

sampleConnectWithURLUsingDriverManager();

}

private

static

void

sampleConnectUsingSimpleDataSource()

{

java.sql.Connection

c

=

null;

java.io.PrintWriter

printWriter

=

new

java.io.PrintWriter(System.out,

true);

//

Prints

to

console,

true

means

//

auto-flush

so

you

don’t

lose

trace

try

{

javax.sql.DataSource

ds

=

new

com.ibm.db2.jcc.DB2SimpleDataSource();

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setServerName("sysmvs1.stl.ibm.com");

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setPortNumber(5021);

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setDatabaseName("san_jose");

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).setDriverType(4);

ds.setLogWriter(printWriter);

//

This

turns

on

tracing

//

Refine

the

level

of

tracing

detail

((com.ibm.db2.jcc.DB2BaseDataSource)

ds).

setTraceLevel(com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_CONNECTS

|

com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_DRDA_FLOWS);

//

This

connection

request

is

traced

using

trace

level

//

TRACE_CONNECTS

|

TRACE_DRDA_FLOWS

c

=

ds.getConnection("myname",

"mypass");

//

Change

the

trace

level

to

TRACE_ALL

//

for

all

subsequent

requests

on

the

connection

((com.ibm.db2.jcc.DB2Connection)

c).setJccLogWriter(printWriter,

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

Figure

71.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

1

of

5)

Chapter

13.

Diagnosing

JDBC

and

SQLJ

problems

265

//

The

following

INSERT

is

traced

using

trace

level

TRACE_ALL

java.sql.Statement

s1

=

c.createStatement();

s1.executeUpdate("INSERT

INTO

sampleTable(sampleColumn)

VALUES(1)");

s1.close();

//

This

code

disables

all

tracing

on

the

connection

((com.ibm.db2.jcc.DB2Connection)

c).setJccLogWriter(null);

//

The

following

INSERT

statement

is

not

traced

java.sql.Statement

s2

=

c.createStatement();

s2.executeUpdate("INSERT

INTO

sampleTable(sampleColumn)

VALUES(1)");

s2.close();

c.close();

}

catch(java.sql.SQLException

e)

{

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

finally

{

cleanup(c,

printWriter);

printWriter.flush();

}

}

//

If

the

code

ran

successfully,

the

connection

should

//

already

be

closed.

Check

whether

the

connection

is

closed.

//

If

so,

just

return.

//

If

a

failure

occurred,

try

to

roll

back

and

close

the

connection.

private

static

void

cleanup(java.sql.Connection

c,

java.io.PrintWriter

printWriter)

{

if(c

==

null)

return;

try

{

if(c.isClosed())

{

printWriter.println("[TraceExample]

"

+

"The

connection

was

successfully

closed");

return;

}

//

If

we

get

to

here,

something

has

gone

wrong.

//

Roll

back

and

close

the

connection.

printWriter.println("[TraceExample]

Rolling

back

the

connection");

try

{

c.rollback();

}

Figure

71.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

2

of

5)

266

Application

Programming

Guide

and

Reference

for

Java™

catch(java.sql.SQLException

e)

{

printWriter.println("[TraceExample]

"

+

"Trapped

the

following

java.sql.SQLException

while

trying

to

roll

back:");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

printWriter.println("[TraceExample]

"

+

"Unable

to

roll

back

the

connection");

}

catch(java.lang.Throwable

e)

{

printWriter.println("[TraceExample]

Trapped

the

"

+

"following

java.lang.Throwable

while

trying

to

roll

back:");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

printWriter.println("[TraceExample]

Unable

to

"

+

"roll

back

the

connection");

}

//

Close

the

connection

printWriter.println("[TraceExample]

Closing

the

connection");

try

{

c.close();

}

catch(java.sql.SQLException

e)

{

printWriter.println("[TraceExample]

Exception

while

"

+

"trying

to

close

the

connection");

printWriter.println("[TraceExample]

Deadlocks

could

"

+

"occur

if

the

connection

is

not

closed.");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

catch(java.lang.Throwable

e)

{

printWriter.println("[TraceExample]

Throwable

caught

"

+

"while

trying

to

close

the

connection");

printWriter.println("[TraceExample]

Deadlocks

could

"

+

"occur

if

the

connection

is

not

closed.");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

}

catch(java.lang.Throwable

e)

{

printWriter.println("[TraceExample]

Unable

to

"

+

"force

the

connection

to

close");

printWriter.println("[TraceExample]

Deadlocks

"

+

"could

occur

if

the

connection

is

not

closed.");

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

}

Figure

71.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

3

of

5)

Chapter

13.

Diagnosing

JDBC

and

SQLJ

problems

267

private

static

void

sampleConnectWithURLUsingDriverManager()

{

java.sql.Connection

c

=

null;

//

This

time,

send

the

printWriter

to

a

file.

java.io.PrintWriter

printWriter

=

null;

try

{

printWriter

=

new

java.io.PrintWriter(

new

java.io.BufferedOutputStream(

new

java.io.FileOutputStream("/temp/driverLog.txt"),

4096),

true);

}

catch(java.io.FileNotFoundException

e)

{

java.lang.System.err.println("Unable

to

establish

a

print

writer

for

trace");

java.lang.System.err.flush();

return;

}

try

{

Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch(ClassNotFoundException

e)

{

printWriter.println("[TraceExample]

Universal

Driver

type

4

connectivity

"

+

"is

not

in

the

application

classpath.

Unable

to

load

driver.");

printWriter.flush();

return;

}

//

This

URL

describes

the

target

data

source

for

Type

4

connectivity.

//

The

traceLevel

property

is

established

through

the

URL

syntax,

//

and

driver

tracing

is

directed

to

file

"/temp/driverLog.txt"

String

databaseURL

=

"jdbc:db2://sysmvs1.stl.ibm.com:5021"

+

"/sample:traceFile=/temp/driverLog.txt;traceLevel="

+

"(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS

"

+

"|

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS);";

//

Set

other

properties

java.util.Properties

properties

=

new

java.util.Properties();

properties.setProperty("user",

"myname");

properties.setProperty("password",

"mypass");

Figure

71.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

4

of

5)

268

Application

Programming

Guide

and

Reference

for

Java™

Formatting

trace

data

for

C/C++

native

driver

code

with

the

DB2

Universal

JDBC

Driver

To

format

trace

data

for

C/C++

native

driver

code

under

DB2

Universal

JDBC

Driver

type

2

connectivity

on

DB2

UDB

for

z/OS,

you

execute

the

db2jcctrace

command

from

the

z/OS

UNIX

System

Services

command

line.

You

enable

tracing

of

C/C++

native

driver

code

by

setting

a

value

for

the

db2.jcc.t2zosTraceFile

property.

That

value

is

the

name

of

the

file

to

which

the

DB2

Universal

JDBC

Driver

writes

the

trace

data.

The

value

of

db2.jcc.t2zosTraceFile

is

the

name

of

the

input

file

for

db2jcctrace.

db2jcctrace

writes

formatted

trace

data

to

stdout.

You

can

pipe

the

output

to

any

file.

The

format

of

db2jccjtrace

is:

try

{

//

This

connection

request

is

traced

using

trace

level

//

TRACE_CONNECTS

|

TRACE_DRDA_FLOWS

c

=

java.sql.DriverManager.getConnection(databaseURL,

properties);

//

Change

the

trace

level

for

all

subsequent

requests

//

on

the

connection

to

TRACE_ALL

((com.ibm.db2.jcc.DB2Connection)

c).setJccLogWriter(printWriter,

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

//

The

following

INSERT

is

traced

using

trace

level

TRACE_ALL

java.sql.Statement

s1

=

c.createStatement();

s1.executeUpdate("INSERT

INTO

sampleTable(sampleColumn)

VALUES(1)");

s1.close();

//

Disable

all

tracing

on

the

connection

((com.ibm.db2.jcc.DB2Connection)

c).setJccLogWriter(null);

//

The

following

SQL

insert

code

is

not

traced

java.sql.Statement

s2

=

c.createStatement();

s2.executeUpdate("insert

into

sampleTable(sampleColumn)

values(1)");

s2.close();

c.close();

}

catch(java.sql.SQLException

e)

{

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

printWriter,

"[TraceExample]");

}

finally

{

cleanup(c,

printWriter);

printWriter.flush();

}

}

}

Figure

71.

Example

of

tracing

under

the

DB2

Universal

JDBC

Driver

(Part

5

of

5)

Chapter

13.

Diagnosing

JDBC

and

SQLJ

problems

269

|

|

|
|
|

|
|
|

|
|
|

|
|

��

db2jcctrace

(1)

format

flow

information

input-file-name

��

Notes:

1 You

must

specify

one

of

these

parameters.

The

meanings

of

the

parameters

are:

format

Specifies

that

the

output

trace

file

contains

formatted

trace

data.

Abbreviation:

fmt

flow

Specifies

that

the

output

trace

file

contains

control

flow

information.

Abbreviation:

flw

information

Specifies

that

the

output

trace

file

contains

information

about

the

trace,

such

as

the

version

of

the

driver,

the

time

at

which

the

trace

was

taken,

and

whether

the

trace

file

wrapped

or

was

truncated.

This

information

is

also

included

in

the

output

trace

file

when

you

specify

format

or

flow.

Abbreviation:

inf

or

info

input-file-name

Specifies

the

name

of

the

file

from

which

db2jcctrace

is

to

read

the

unformatted

trace

data.

Diagnosing

SQLJ

problems

with

the

JDBC/SQLJ

Driver

for

OS/390

SQLJ

programs

can

generate

two

types

of

errors:

v

Recoverable

errors

SQLJ

reports

recoverable

SQL

errors

through

the

JDBC

java.sql.SQLException

class.

You

can

use

methods

getErrorCode

and

getSQLState

to

retrieve

error

codes

and

SQLSTATEs.

See

“Handling

an

SQLException

under

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

23

for

information

on

how

to

write

your

application

program

to

retrieve

error

codes

and

SQLSTATEs.

All

SQLSTATEs

except

FFFFF

are

documented

in

Part

1

of

DB2

Messages

and

Codes.

FFFFF

is

a

special

SQLSTATE

that

indicates

an

internal

error

in

the

JDBC/SQLJ

Driver

for

OS/390.

error

code

values

that

are

associated

with

SQLSTATE

FFFFF

are

also

not

documented.

If

you

receive

SQLSTATE

FFFFF,

contact

your

IBM

service

representative.

v

Non-recoverable

errors

These

errors

do

not

throw

an

SQLException,

or

the

application

cannot

catch

the

exception.

To

diagnose

recoverable

errors

that

generate

SQLSTATE

FFFFF

or

repeatable,

non-recoverable

errors,

you

can

collect

trace

data

and

run

utilities

that

generate

additional

diagnostic

information.

You

should

run

the

trace

and

diagnostic

utilities

only

under

the

direction

of

your

IBM

service

representative.

270

Application

Programming

Guide

and

Reference

for

Java™

||||||||||||||||||||||

|

|

||
|

|

|
|

|

|
|

|

|
|
|
|
|

|

|
|
|

Formatting

trace

data

with

the

JDBC/SQLJ

Driver

for

OS/390

Before

you

can

format

SQLJ

trace

data,

you

must

set

several

environment

variables.

You

must

also

set

several

parameters

in

the

run-time

properties

file

that

you

name

in

environment

variable

DB2SQLJPROPERTIES.

“The

SQLJ/JDBC

run-time

properties

file”

on

page

236

describes

these

variables

and

parameters.

In

the

CICS

environment,

configuring

for

traces

is

somewhat

different

than

in

other

environments.

See

“Special

considerations

for

CICS

applications,”

on

page

273

for

information

on

tracing

in

the

CICS

environment.

When

you

set

the

parameter

DB2SQLJ_TRACE_FILENAME

in

the

run-time

properties

file,

you

enable

SQLJ/JDBC

tracing.

The

JDBC/SQLJ

Driver

for

OS/390

generates

two

trace

files:

v

One

trace

file

has

a

proprietary,

binary

format

and

must

be

formatted

using

the

db2sqljtrace

command.

The

name

of

that

trace

file

is

trace-file,

where

trace-file

is

the

value

to

which

you

set

DB2SQLJ_TRACE_FILENAME.

v

The

other

trace

file

contains

readable

text,

which

requires

no

additional

formatting.

The

name

of

that

trace

file

is

trace-file.JTRACE.

If

your

IBM

service

representative

requests

a

DB2

SQLJ/JDBC

trace,

you

need

to

format

trace-file

using

db2sqljtrace.

Send

the

db2sqljtrace

output

and

trace-file.JTRACE

to

IBM.

The

db2sqljtrace

command

writes

the

formatted

trace

data

to

stdout.

The

format

of

db2sqljtrace

is:

��

db2sqljtrace

fmt

flw

input-file-name

��

The

meanings

of

the

parameters

are:

fmt

Specifies

that

the

output

trace

file

is

to

contain

a

record

of

each

time

a

function

is

entered

or

exited

before

the

failure

occurs.

flw

Specifies

that

the

output

trace

file

is

to

contain

the

function

flow

before

the

failure

occurs.

input-file-name

Specifies

the

name

of

the

file

from

which

db2sqljtrace

is

to

read

the

unformatted

trace

data.

This

name

is

the

name

you

specified

for

environment

variable

DB2SQLJ_TRACE_FILENAME.

Running

utilities

to

format

diagnostic

data

This

topic

describes

utilities

that

you

can

run

to

retrieve

and

format

diagnostic

data

when

an

internal

error

occurs.

Using

the

profp

utility

to

format

information

about

a

serialized

profile

The

profp

utility

formats

information

about

each

SQLJ

clause

in

a

serialized

profile.

The

format

of

the

profp

utility

is:

Chapter

13.

Diagnosing

JDBC

and

SQLJ

problems

271

��

profp

serialized-profile-name

��

Run

the

profp

utility

on

the

serialized

profile

for

the

connection

in

which

the

error

occurs.

If

an

exception

is

thrown,

a

Java

stack

trace

is

generated.

You

can

determine

which

serialized

profile

was

in

use

when

the

exception

was

thrown

from

the

stack

trace.

Using

the

db2profp

utility

to

format

information

about

a

JDBC/SQLJ

Driver

for

OS/390

customized

profile

The

db2profp

utility

formats

information

about

each

SQLJ

clause

in

a

serialized

profile

that

is

customized

for

the

JDBC/SQLJ

Driver

for

OS/390.

The

format

of

the

db2profp

utility

is:

��

db2profp

customized-serialized-profile-name

��

Run

the

db2profp

utility

on

the

customized

serialized

profile

for

the

connection

in

which

the

error

occurs.

272

Application

Programming

Guide

and

Reference

for

Java™

Appendix.

Special

considerations

for

CICS

applications

In

general,

writing

and

running

JDBC

and

SQLJ

applications

for

a

CICS

environment

is

similar

to

writing

and

running

any

other

JDBC

and

SQLJ

applications.

However,

there

are

some

important

differences.

This

topic

outlines

those

differences

and

explains

what

you

need

to

do

about

them.

The

CICS

Transaction

Server

for

z/OS

DB2

Guide

is

the

primary

source

for

information

on

setting

up

the

CICS

environment

for

JDBC

and

SQLJ.

Refer

to

that

document

before

you

read

this

material.

Choosing

parameter

values

for

the

SQLJ/JDBC

run-time

properties

file

Some

parameters

in

the

SQLJ/JDBC

run-time

properties

file

have

different

meanings

in

the

CICS

environment

from

other

environments.

Those

parameters

are:

DB2SQLJPLANNAME

This

parameter

is

not

used

in

a

CICS

environment.

Specify

the

name

of

the

plan

that

is

associated

with

the

SQLJ

or

JDBC

application

in

one

of

the

following

places:

v

The

PLAN

parameter

of

the

DB2CONN

definition

v

The

PLAN

parameter

of

the

DB2ENTRY

definition

v

The

CPRMPLAN

parameter

of

a

dynamic

plan

exit

DB2SQLJ_TRACE_FILENAME

For

the

JVM

environment,

you

can

specify

a

fully-qualified

path

name

or

an

unqualified

file

name.

If

you

specify

an

unqualified

file

name,

the

file

is

allocated

in

the

directory

path

that

is

specified

by

the

CICS

JVM

environment

variable

CICS_HOME.

If

you

want

to

use

the

same

properties

file

for

both

environments,

specify

a

fully-qualified

path

name.

DB2SQLJSSID

This

parameter

is

not

used

in

a

CICS

environment.

DB2SQLJMULTICONTEXT

This

parameter

is

not

used

in

a

CICS

environment.

You

cannot

enable

z/OS

multiple

context

support

in

the

CICS

environment.

Each

CICS

Java

application

can

have

a

maximum

of

one

connection.

Choosing

parameter

values

for

the

db2genJDBC

utility

The

db2genJDBC

creates

a

JDBC

profile.

The

default

value

for

the

statements

parameters

might

not

be

appropriate

for

CICS

applications.

The

default

value

generates

a

large

JDBC

profile.

Choose

a

value

for

the

statements

parameter

that

is

lower

than

the

default

of

150.

The

default

value

produces

more

sections

than

are

necessary

for

typical

CICS

applications.

A

larger

number

of

sections

results

in

a

larger

JDBC

profile

size.

A

value

of

10

should

be

adequate

for

most

CICS

applications.

©

Copyright

IBM

Corp.

1998,

2004

273

|
|
|

Choosing

the

number

of

cursors

for

JDBC

result

sets

The

cursor

properties

file

describes

the

DB2

cursors

that

the

JDBC/SQLJ

Driver

for

OS/390

uses

to

process

JDBC

result

sets.

The

default

cursor

properties

file,

db2jdbc.cursors,

defines

100

cursors

with

the

WITH

HOLD

attribute,

and

100

cursors

without

the

WITH

HOLD

attribute.

This

number

of

cursors

is

too

large

for

CICS

applications,

and

it

results

in

a

JDBC

profile

size

that

is

large

enough

to

degrade

performance.

Specifying

five

cursors

with

hold

and

five

cursors

without

hold

should

be

should

be

adequate

for

most

CICS

applications.

Setting

environment

variables

for

the

CICS

environment

For

CICS

JDBC

and

SQLJ

programs

that

run

in

the

JVM

environment,

the

way

in

which

you

specify

environment

variables

depends

on

the

release

of

CICS:

v

For

CICS

Transaction

Server

V1R3,

you

specify

the

environment

variables

that

are

listed

in

“Setting

environment

variables

for

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

236

in

the

DFHJVM

member

of

the

SDFHENV

data

set.

The

DB2SQLJPROPERTIES

environment

variable

specifies

the

name

of

the

run-time

properties

file.

v

For

CICS

Transaction

Server

V2R2

or

later,

which

uses

the

IBM

Developer

Kit

for

OS/390,

Java

2

Technology

Edition,

SDK

1.3.1

or

later,

the

DB2SQLJPROPERTIES

environment

variable

is

not

used.

You

need

to

set

all

system

properties

that

are

required

by

the

JDBC/SQLJ

Driver

for

OS/390

in

the

system

properties

file

that

is

referenced

by

the

JVMPROPS

parameter

in

the

relevant

JVM

profile.

For

more

information,

see

CICS

Transaction

Server

for

z/OS

DB2

Guide.

Connecting

to

DB2

in

the

CICS

environment

For

SQLJ

or

JDBC

applications

in

a

CICS

environment,

the

connection

to

DB2

is

always

through

the

CICS

attachment

facility.

Unlike

SQLJ

and

JDBC

applications

that

use

other

attachment

facilities,

SQLJ

and

JDBC

applications

that

use

the

CICS

attachment

facility

can

create

only

one

JDBC

java.sql.Connection

object

within

a

unit

of

work.

That

java.sql.Connection

object

is

associated

with

the

CICS

unit

of

work.

CICS

coordinates

all

DB2

updates

within

the

unit

of

work.

A

program

that

runs

in

the

CICS

environment

cannot

specify

a

user

ID

or

password

in

a

getConnection

method

call.

Doing

so

causes

an

SQLException.

In

CICS

DB2

programs

that

are

written

in

languages

other

than

Java,

calling

applications

and

called

applications

can

share

a

DB2

thread.

JDBC

does

not

allow

several

applications

to

share

a

java.sql.Connection

object,

which,

in

the

CICS

environment,

means

that

calling

applications

and

called

applications

cannot

share

a

DB2

thread.

Therefore,

if

a

CICS

application

is

doing

DB2

work,

and

that

application

calls

an

SQLJ

or

JDBC

application,

the

calling

application

needs

to

commit

all

updates

before

calling

the

SQLJ

or

JDBC

application.

The

CICS

attachment

facility

supports

multithreading.

Multiple

Java

threads

are

supported

for

a

single

CICS

application.

However,

only

the

Java

thread

for

the

main

application

is

associated

with

the

DB2

attachment.

JDBC

and

SQLJ

processing

is

not

supported

for

Java

child

threads.

274

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

In

a

CICS

SQLJ

or

JDBC

application,

you

need

to

explicitly

close

the

java.sql.Connection

before

the

program

ends.

This

ensures

that

work

done

on

the

Connection

object

is

committed

and

that

the

java.sql.Connection

object

is

available

for

use

by

another

application.

In

the

CICS

environment,

when

an

application

creates

a

Connection

object

using

the

default

URL

("jdbc:default:connection"

or

"jdbc:db2os390sqlj:"),

CICS

continues

an

existing

connection

for

a

DB2

thread.

The

new

Connection

object

has

the

previous

server

location

and

transaction

state.

When

you

close

this

Connection

object,

CICS

does

not

do

an

automatic

commit,

and

the

application

does

not

throw

an

SQLException

if

the

DB2

thread

is

not

on

a

transaction

boundary.

Commit

and

rollback

processing

in

CICS

SQLJ

and

JDBC

applications

In

a

CICS

environment,

the

default

state

of

autoCommit

for

a

JDBC

connection

is

off.

You

can

use

JDBC

and

SQLJ

commit

and

rollback

processing

in

your

CICS

applications.

The

JDBC/SQLJ

Driver

for

OS/390

translates

commit

and

rollback

statements

to

CICS

syncpoint

calls.

The

scope

of

those

calls

is

the

entire

CICS

transaction.

Abnormal

terminations

in

the

CICS

attachment

facility

Abends

in

code

that

is

called

by

the

JDBC/SQLJ

Driver

for

OS/390,

such

as

abends

in

the

CICS

attachment

facility,

do

not

generate

exceptions

in

SQLJ

or

JDBC

programs.

A

CICS

attachment

facility

abend

causes

a

rollback

to

the

last

syncpoint.

Running

traces

in

a

CICS

environment

When

you

trace

a

JDBC

or

SQLJ

CICS

application

that

runs

in

a

JVM,

the

trace

output

goes

to

trace-file

(the

binary

trace)

and

trace-file.JTRACE

(the

readable

trace),

as

described

in

“Formatting

trace

data

with

the

JDBC/SQLJ

Driver

for

OS/390”

on

page

271.

Appendix.

Special

considerations

for

CICS

applications

275

276

Application

Programming

Guide

and

Reference

for

Java™

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106-0032,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1998,

2004

277

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Programming

interface

information

This

book

is

intended

to

help

the

customer

write

applications

that

use

Java

to

access

IBM

DB2

UDB

for

z/OS

servers.

This

book

primarily

documents

General-use

Programming

Interface

and

Associated

Guidance

Information

provided

by

DB2

Universal

Database

for

z/OS

(DB2

UDB

for

z/OS).

General-use

programming

interfaces

allow

the

customer

to

write

programs

that

obtain

the

services

of

DB2

UDB

for

z/OS.

278

Application

Programming

Guide

and

Reference

for

Java™

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both.

CICS

Cloudscape

DB2

DB2

Universal

Database

DRDA

IBM

ibm.com

IMS

Language

Environment

MVS

Notes

OS/390

RACF

RETAIN

SecureWay

WebSphere

z/OS

zSeries

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

279

280

Application

Programming

Guide

and

Reference

for

Java™

Glossary

The

following

terms

and

abbreviations

are

defined

as

they

are

used

in

the

DB2

library.

A

abend.

Abnormal

end

of

task.

abend

reason

code.

A

4-byte

hexadecimal

code

that

uniquely

identifies

a

problem

with

DB2.

A

complete

list

of

DB2

abend

reason

codes

and

their

explanations

is

contained

in

DB2

Messages

and

Codes.

abnormal

end

of

task

(abend).

Termination

of

a

task,

job,

or

subsystem

because

of

an

error

condition

that

recovery

facilities

cannot

resolve

during

execution.

access

method

services.

The

facility

that

is

used

to

define

and

reproduce

VSAM

key-sequenced

data

sets.

access

path.

The

path

that

is

used

to

locate

data

that

is

specified

in

SQL

statements.

An

access

path

can

be

indexed

or

sequential.

active

log.

The

portion

of

the

DB2

log

to

which

log

records

are

written

as

they

are

generated.

The

active

log

always

contains

the

most

recent

log

records,

whereas

the

archive

log

holds

those

records

that

are

older

and

no

longer

fit

on

the

active

log.

active

member

state.

A

state

of

a

member

of

a

data

sharing

group.

The

cross-system

coupling

facility

identifies

each

active

member

with

a

group

and

associates

the

member

with

a

particular

task,

address

space,

and

z/OS

system.

A

member

that

is

not

active

has

either

a

failed

member

state

or

a

quiesced

member

state.

address

space.

A

range

of

virtual

storage

pages

that

is

identified

by

a

number

(ASID)

and

a

collection

of

segment

and

page

tables

that

map

the

virtual

pages

to

real

pages

of

the

computer’s

memory.

address

space

connection.

The

result

of

connecting

an

allied

address

space

to

DB2.

Each

address

space

that

contains

a

task

that

is

connected

to

DB2

has

exactly

one

address

space

connection,

even

though

more

than

one

task

control

block

(TCB)

can

be

present.

See

also

allied

address

space

and

task

control

block.

address

space

identifier

(ASID).

A

unique

system-assigned

identifier

for

and

address

space.

administrative

authority.

A

set

of

related

privileges

that

DB2

defines.

When

you

grant

one

of

the

administrative

authorities

to

a

person’s

ID,

the

person

has

all

of

the

privileges

that

are

associated

with

that

administrative

authority.

after

trigger.

A

trigger

that

is

defined

with

the

trigger

activation

time

AFTER.

agent.

As

used

in

DB2,

the

structure

that

associates

all

processes

that

are

involved

in

a

DB2

unit

of

work.

An

allied

agent

is

generally

synonymous

with

an

allied

thread.

System

agents

are

units

of

work

that

process

tasks

that

are

independent

of

the

allied

agent,

such

as

prefetch

processing,

deferred

writes,

and

service

tasks.

alias.

An

alternative

name

that

can

be

used

in

SQL

statements

to

refer

to

a

table

or

view

in

the

same

or

a

remote

DB2

subsystem.

allied

address

space.

An

area

of

storage

that

is

external

to

DB2

and

that

is

connected

to

DB2.

An

allied

address

space

is

capable

of

requesting

DB2

services.

allied

thread.

A

thread

that

originates

at

the

local

DB2

subsystem

and

that

can

access

data

at

a

remote

DB2

subsystem.

allocated

cursor.

A

cursor

that

is

defined

for

stored

procedure

result

sets

by

using

the

SQL

ALLOCATE

CURSOR

statement.

already

verified.

An

LU

6.2

security

option

that

allows

DB2

to

provide

the

user’s

verified

authorization

ID

when

allocating

a

conversation.

With

this

option,

the

user

is

not

validated

by

the

partner

DB2

subsystem.

ambiguous

cursor.

A

database

cursor

that

is

in

a

plan

or

package

that

contains

either

PREPARE

or

EXECUTE

IMMEDIATE

SQL

statements,

and

for

which

the

following

statements

are

true:

the

cursor

is

not

defined

with

the

FOR

READ

ONLY

clause

or

the

FOR

UPDATE

OF

clause;

the

cursor

is

not

defined

on

a

read-only

result

table;

the

cursor

is

not

the

target

of

a

WHERE

CURRENT

clause

on

an

SQL

UPDATE

or

DELETE

statement.

American

National

Standards

Institute

(ANSI).

An

organization

consisting

of

producers,

consumers,

and

general

interest

groups,

that

establishes

the

procedures

by

which

accredited

organizations

create

and

maintain

voluntary

industry

standards

in

the

United

States.

ANSI.

American

National

Standards

Institute.

APAR.

Authorized

program

analysis

report.

APAR

fix

corrective

service.

A

temporary

correction

of

an

IBM

software

defect.

The

correction

is

temporary,

because

it

is

usually

replaced

at

a

later

date

by

a

more

permanent

correction,

such

as

a

program

temporary

fix

(PTF).

APF.

Authorized

program

facility.

API.

Application

programming

interface.

©

Copyright

IBM

Corp.

1998,

2004

281

|
|

|

|

|

|

|

|

|

|

|

APPL.

A

VTAM®

network

definition

statement

that

is

used

to

define

DB2

to

VTAM

as

an

application

program

that

uses

SNA

LU

6.2

protocols.

application.

A

program

or

set

of

programs

that

performs

a

task;

for

example,

a

payroll

application.

application-directed

connection.

A

connection

that

an

application

manages

using

the

SQL

CONNECT

statement.

application

plan.

The

control

structure

that

is

produced

during

the

bind

process.

DB2

uses

the

application

plan

to

process

SQL

statements

that

it

encounters

during

statement

execution.

application

process.

The

unit

to

which

resources

and

locks

are

allocated.

An

application

process

involves

the

execution

of

one

or

more

programs.

application

programming

interface

(API).

A

functional

interface

that

is

supplied

by

the

operating

system

or

by

a

separately

orderable

licensed

program

that

allows

an

application

program

that

is

written

in

a

high-level

language

to

use

specific

data

or

functions

of

the

operating

system

or

licensed

program.

application

requester.

The

component

on

a

remote

system

that

generates

DRDA®

requests

for

data

on

behalf

of

an

application.

An

application

requester

accesses

a

DB2

database

server

using

the

DRDA

application-directed

protocol.

application

server.

The

target

of

a

request

from

a

remote

application.

In

the

DB2

environment,

the

application

server

function

is

provided

by

the

distributed

data

facility

and

is

used

to

access

DB2

data

from

remote

applications.

archive

log.

The

portion

of

the

DB2

log

that

contains

log

records

that

have

been

copied

from

the

active

log.

ASCII.

An

encoding

scheme

that

is

used

to

represent

strings

in

many

environments,

typically

on

PCs

and

workstations.

Contrast

with

EBCDIC

and

Unicode.

ASID.

Address

space

identifier.

attachment

facility.

An

interface

between

DB2

and

TSO,

IMS,

CICS,

or

batch

address

spaces.

An

attachment

facility

allows

application

programs

to

access

DB2.

attribute.

A

characteristic

of

an

entity.

For

example,

in

database

design,

the

phone

number

of

an

employee

is

one

of

that

employee’s

attributes.

authorization

ID.

A

string

that

can

be

verified

for

connection

to

DB2

and

to

which

a

set

of

privileges

is

allowed.

It

can

represent

an

individual,

an

organizational

group,

or

a

function,

but

DB2

does

not

determine

this

representation.

authorized

program

analysis

report

(APAR).

A

report

of

a

problem

that

is

caused

by

a

suspected

defect

in

a

current

release

of

an

IBM

supplied

program.

authorized

program

facility

(APF).

A

facility

that

permits

the

identification

of

programs

that

are

authorized

to

use

restricted

functions.

automatic

query

rewrite.

A

process

that

examines

an

SQL

statement

that

refers

to

one

or

more

base

tables,

and,

if

appropriate,

rewrites

the

query

so

that

it

performs

better.

This

process

can

also

determine

whether

to

rewrite

a

query

so

that

it

refers

to

one

or

more

materialized

query

tables

that

are

derived

from

the

source

tables.

auxiliary

index.

An

index

on

an

auxiliary

table

in

which

each

index

entry

refers

to

a

LOB.

auxiliary

table.

A

table

that

stores

columns

outside

the

table

in

which

they

are

defined.

Contrast

with

base

table.

B

backout.

The

process

of

undoing

uncommitted

changes

that

an

application

process

made.

This

might

be

necessary

in

the

event

of

a

failure

on

the

part

of

an

application

process,

or

as

a

result

of

a

deadlock

situation.

backward

log

recovery.

The

fourth

and

final

phase

of

restart

processing

during

which

DB2

scans

the

log

in

a

backward

direction

to

apply

UNDO

log

records

for

all

aborted

changes.

base

table.

(1)

A

table

that

is

created

by

the

SQL

CREATE

TABLE

statement

and

that

holds

persistent

data.

Contrast

with

result

table

and

temporary

table.

(2)

A

table

containing

a

LOB

column

definition.

The

actual

LOB

column

data

is

not

stored

with

the

base

table.

The

base

table

contains

a

row

identifier

for

each

row

and

an

indicator

column

for

each

of

its

LOB

columns.

Contrast

with

auxiliary

table.

base

table

space.

A

table

space

that

contains

base

tables.

basic

predicate.

A

predicate

that

compares

two

values.

basic

sequential

access

method

(BSAM).

An

access

method

for

storing

or

retrieving

data

blocks

in

a

continuous

sequence,

using

either

a

sequential-access

or

a

direct-access

device.

batch

message

processing

program.

In

IMS,

an

application

program

that

can

perform

batch-type

processing

online

and

can

access

the

IMS

input

and

output

message

queues.

APPL

•

batch

message

processing

program

282

Application

Programming

Guide

and

Reference

for

Java™

|

|

|

|

|

|

|

|

|

|

|

|

before

trigger.

A

trigger

that

is

defined

with

the

trigger

activation

time

BEFORE.

binary

integer.

A

basic

data

type

that

can

be

further

classified

as

small

integer

or

large

integer.

binary

large

object

(BLOB).

A

sequence

of

bytes

where

the

size

of

the

value

ranges

from

0

bytes

to

2

GB−1.

Such

a

string

does

not

have

an

associated

CCSID.

binary

string.

A

sequence

of

bytes

that

is

not

associated

with

a

CCSID.

For

example,

the

BLOB

data

type

is

a

binary

string.

bind.

The

process

by

which

the

output

from

the

SQL

precompiler

is

converted

to

a

usable

control

structure,

often

called

an

access

plan,

application

plan,

or

package.

During

this

process,

access

paths

to

the

data

are

selected

and

some

authorization

checking

is

performed.

The

types

of

bind

are:

automatic

bind.

(More

correctly,

automatic

rebind)

A

process

by

which

SQL

statements

are

bound

automatically

(without

a

user

issuing

a

BIND

command)

when

an

application

process

begins

execution

and

the

bound

application

plan

or

package

it

requires

is

not

valid.

dynamic

bind.

A

process

by

which

SQL

statements

are

bound

as

they

are

entered.

incremental

bind.

A

process

by

which

SQL

statements

are

bound

during

the

execution

of

an

application

process.

static

bind.

A

process

by

which

SQL

statements

are

bound

after

they

have

been

precompiled.

All

static

SQL

statements

are

prepared

for

execution

at

the

same

time.

bit

data.

Data

that

is

character

type

CHAR

or

VARCHAR

and

is

not

associated

with

a

coded

character

set.

BLOB.

Binary

large

object.

block

fetch.

A

capability

in

which

DB2

can

retrieve,

or

fetch,

a

large

set

of

rows

together.

Using

block

fetch

can

significantly

reduce

the

number

of

messages

that

are

being

sent

across

the

network.

Block

fetch

applies

only

to

cursors

that

do

not

update

data.

BMP.

Batch

Message

Processing

(IMS).

See

batch

message

processing

program.

bootstrap

data

set

(BSDS).

A

VSAM

data

set

that

contains

name

and

status

information

for

DB2,

as

well

as

RBA

range

specifications,

for

all

active

and

archive

log

data

sets.

It

also

contains

passwords

for

the

DB2

directory

and

catalog,

and

lists

of

conditional

restart

and

checkpoint

records.

BSAM.

Basic

sequential

access

method.

BSDS.

Bootstrap

data

set.

buffer

pool.

Main

storage

that

is

reserved

to

satisfy

the

buffering

requirements

for

one

or

more

table

spaces

or

indexes.

built-in

data

type.

A

data

type

that

IBM

supplies.

Among

the

built-in

data

types

for

DB2

UDB

for

z/OS

are

string,

numeric,

ROWID,

and

datetime.

Contrast

with

distinct

type.

built-in

function.

A

function

that

DB2

supplies.

Contrast

with

user-defined

function.

business

dimension.

A

category

of

data,

such

as

products

or

time

periods,

that

an

organization

might

want

to

analyze.

C

cache

structure.

A

coupling

facility

structure

that

stores

data

that

can

be

available

to

all

members

of

a

Sysplex.

A

DB2

data

sharing

group

uses

cache

structures

as

group

buffer

pools.

CAF.

Call

attachment

facility.

call

attachment

facility

(CAF).

A

DB2

attachment

facility

for

application

programs

that

run

in

TSO

or

z/OS

batch.

The

CAF

is

an

alternative

to

the

DSN

command

processor

and

provides

greater

control

over

the

execution

environment.

call-level

interface

(CLI).

A

callable

application

programming

interface

(API)

for

database

access,

which

is

an

alternative

to

using

embedded

SQL.

In

contrast

to

embedded

SQL,

DB2

ODBC

(which

is

based

on

the

CLI

architecture)

does

not

require

the

user

to

precompile

or

bind

applications,

but

instead

provides

a

standard

set

of

functions

to

process

SQL

statements

and

related

services

at

run

time.

cascade

delete.

The

way

in

which

DB2

enforces

referential

constraints

when

it

deletes

all

descendent

rows

of

a

deleted

parent

row.

CASE

expression.

An

expression

that

is

selected

based

on

the

evaluation

of

one

or

more

conditions.

cast

function.

A

function

that

is

used

to

convert

instances

of

a

(source)

data

type

into

instances

of

a

different

(target)

data

type.

In

general,

a

cast

function

has

the

name

of

the

target

data

type.

It

has

one

single

argument

whose

type

is

the

source

data

type;

its

return

type

is

the

target

data

type.

castout.

The

DB2

process

of

writing

changed

pages

from

a

group

buffer

pool

to

disk.

castout

owner.

The

DB2

member

that

is

responsible

for

casting

out

a

particular

page

set

or

partition.

catalog.

In

DB2,

a

collection

of

tables

that

contains

descriptions

of

objects

such

as

tables,

views,

and

indexes.

before

trigger

•

catalog

Glossary

283

catalog

table.

Any

table

in

the

DB2

catalog.

CCSID.

Coded

character

set

identifier.

CDB.

Communications

database.

CDRA.

Character

Data

Representation

Architecture.

CEC.

Central

electronic

complex.

See

central

processor

complex.

central

electronic

complex

(CEC).

See

central

processor

complex.

central

processor

(CP).

The

part

of

the

computer

that

contains

the

sequencing

and

processing

facilities

for

instruction

execution,

initial

program

load,

and

other

machine

operations.

central

processor

complex

(CPC).

A

physical

collection

of

hardware

(such

as

an

ES/3090™)

that

consists

of

main

storage,

one

or

more

central

processors,

timers,

and

channels.

CFRM.

Coupling

facility

resource

management.

CFRM

policy.

A

declaration

by

a

z/OS

administrator

regarding

the

allocation

rules

for

a

coupling

facility

structure.

character

conversion.

The

process

of

changing

characters

from

one

encoding

scheme

to

another.

Character

Data

Representation

Architecture

(CDRA).

An

architecture

that

is

used

to

achieve

consistent

representation,

processing,

and

interchange

of

string

data.

character

large

object

(CLOB).

A

sequence

of

bytes

representing

single-byte

characters

or

a

mixture

of

single-

and

double-byte

characters

where

the

size

of

the

value

can

be

up

to

2

GB−1.

In

general,

character

large

object

values

are

used

whenever

a

character

string

might

exceed

the

limits

of

the

VARCHAR

type.

character

set.

A

defined

set

of

characters.

character

string.

A

sequence

of

bytes

that

represent

bit

data,

single-byte

characters,

or

a

mixture

of

single-byte

and

multibyte

characters.

check

constraint.

A

user-defined

constraint

that

specifies

the

values

that

specific

columns

of

a

base

table

can

contain.

check

integrity.

The

condition

that

exists

when

each

row

in

a

table

conforms

to

the

check

constraints

that

are

defined

on

that

table.

Maintaining

check

integrity

requires

DB2

to

enforce

check

constraints

on

operations

that

add

or

change

data.

check

pending.

A

state

of

a

table

space

or

partition

that

prevents

its

use

by

some

utilities

and

by

some

SQL

statements

because

of

rows

that

violate

referential

constraints,

check

constraints,

or

both.

checkpoint.

A

point

at

which

DB2

records

internal

status

information

on

the

DB2

log;

the

recovery

process

uses

this

information

if

DB2

abnormally

terminates.

child

lock.

For

explicit

hierarchical

locking,

a

lock

that

is

held

on

either

a

table,

page,

row,

or

a

large

object

(LOB).

Each

child

lock

has

a

parent

lock.

See

also

parent

lock.

CI.

Control

interval.

CICS.

Represents

(in

this

publication):

CICS

Transaction

Server

for

z/OS:

Customer

Information

Control

System

Transaction

Server

for

z/OS.

CICS

attachment

facility.

A

DB2

subcomponent

that

uses

the

z/OS

subsystem

interface

(SSI)

and

cross-storage

linkage

to

process

requests

from

CICS

to

DB2

and

to

coordinate

resource

commitment.

CIDF.

Control

interval

definition

field.

claim.

A

notification

to

DB2

that

an

object

is

being

accessed.

Claims

prevent

drains

from

occurring

until

the

claim

is

released,

which

usually

occurs

at

a

commit

point.

Contrast

with

drain.

claim

class.

A

specific

type

of

object

access

that

can

be

one

of

the

following

isolation

levels:

Cursor

stability

(CS)

Repeatable

read

(RR)

Write

claim

count.

A

count

of

the

number

of

agents

that

are

accessing

an

object.

class

of

service.

A

VTAM

term

for

a

list

of

routes

through

a

network,

arranged

in

an

order

of

preference

for

their

use.

class

word.

A

single

word

that

indicates

the

nature

of

a

data

attribute.

For

example,

the

class

word

PROJ

indicates

that

the

attribute

identifies

a

project.

clause.

In

SQL,

a

distinct

part

of

a

statement,

such

as

a

SELECT

clause

or

a

WHERE

clause.

CLI.

Call-

level

interface.

client.

See

requester.

CLIST.

Command

list.

A

language

for

performing

TSO

tasks.

CLOB.

Character

large

object.

closed

application.

An

application

that

requires

exclusive

use

of

certain

statements

on

certain

DB2

objects,

so

that

the

objects

are

managed

solely

through

the

application’s

external

interface.

catalog

table

•

closed

application

284

Application

Programming

Guide

and

Reference

for

Java™

|

|
|

|

|

|

|

|

|

|

|

|

CLPA.

Create

link

pack

area.

clustering

index.

An

index

that

determines

how

rows

are

physically

ordered

(clustered)

in

a

table

space.

If

a

clustering

index

on

a

partitioned

table

is

not

a

partitioning

index,

the

rows

are

ordered

in

cluster

sequence

within

each

data

partition

instead

of

spanning

partitions.

Prior

to

Version

8

of

DB2

UDB

for

z/OS,

the

partitioning

index

was

required

to

be

the

clustering

index.

coded

character

set.

A

set

of

unambiguous

rules

that

establish

a

character

set

and

the

one-to-one

relationships

between

the

characters

of

the

set

and

their

coded

representations.

coded

character

set

identifier

(CCSID).

A

16-bit

number

that

uniquely

identifies

a

coded

representation

of

graphic

characters.

It

designates

an

encoding

scheme

identifier

and

one

or

more

pairs

consisting

of

a

character

set

identifier

and

an

associated

code

page

identifier.

code

page.

(1)

A

set

of

assignments

of

characters

to

code

points.

In

EBCDIC,

for

example,

the

character

'A'

is

assigned

code

point

X'C1'

(2)

,

and

character

'B'

is

assigned

code

point

X'C2'.

Within

a

code

page,

each

code

point

has

only

one

specific

meaning.

code

point.

In

CDRA,

a

unique

bit

pattern

that

represents

a

character

in

a

code

page.

coexistence.

During

migration,

the

period

of

time

in

which

two

releases

exist

in

the

same

data

sharing

group.

cold

start.

A

process

by

which

DB2

restarts

without

processing

any

log

records.

Contrast

with

warm

start.

collection.

A

group

of

packages

that

have

the

same

qualifier.

column.

The

vertical

component

of

a

table.

A

column

has

a

name

and

a

particular

data

type

(for

example,

character,

decimal,

or

integer).

column

function.

An

operation

that

derives

its

result

by

using

values

from

one

or

more

rows.

Contrast

with

scalar

function.

"come

from"

checking.

An

LU

6.2

security

option

that

defines

a

list

of

authorization

IDs

that

are

allowed

to

connect

to

DB2

from

a

partner

LU.

command.

A

DB2

operator

command

or

a

DSN

subcommand.

A

command

is

distinct

from

an

SQL

statement.

command

prefix.

A

one-

to

eight-character

command

identifier.

The

command

prefix

distinguishes

the

command

as

belonging

to

an

application

or

subsystem

rather

than

to

MVS.

command

recognition

character

(CRC).

A

character

that

permits

a

z/OS

console

operator

or

an

IMS

subsystem

user

to

route

DB2

commands

to

specific

DB2

subsystems.

command

scope.

The

scope

of

command

operation

in

a

data

sharing

group.

If

a

command

has

member

scope,

the

command

displays

information

only

from

the

one

member

or

affects

only

non-shared

resources

that

are

owned

locally

by

that

member.

If

a

command

has

group

scope,

the

command

displays

information

from

all

members,

affects

non-shared

resources

that

are

owned

locally

by

all

members,

displays

information

on

sharable

resources,

or

affects

sharable

resources.

commit.

The

operation

that

ends

a

unit

of

work

by

releasing

locks

so

that

the

database

changes

that

are

made

by

that

unit

of

work

can

be

perceived

by

other

processes.

commit

point.

A

point

in

time

when

data

is

considered

consistent.

committed

phase.

The

second

phase

of

the

multisite

update

process

that

requests

all

participants

to

commit

the

effects

of

the

logical

unit

of

work.

common

service

area

(CSA).

In

z/OS,

a

part

of

the

common

area

that

contains

data

areas

that

are

addressable

by

all

address

spaces.

communications

database

(CDB).

A

set

of

tables

in

the

DB2

catalog

that

are

used

to

establish

conversations

with

remote

database

management

systems.

comparison

operator.

A

token

(such

as

=,

>,

or

<)

that

is

used

to

specify

a

relationship

between

two

values.

composite

key.

An

ordered

set

of

key

columns

of

the

same

table.

compression

dictionary.

The

dictionary

that

controls

the

process

of

compression

and

decompression.

This

dictionary

is

created

from

the

data

in

the

table

space

or

table

space

partition.

concurrency.

The

shared

use

of

resources

by

more

than

one

application

process

at

the

same

time.

conditional

restart.

A

DB2

restart

that

is

directed

by

a

user-defined

conditional

restart

control

record

(CRCR).

connection.

In

SNA,

the

existence

of

a

communication

path

between

two

partner

LUs

that

allows

information

to

be

exchanged

(for

example,

two

DB2

subsystems

that

are

connected

and

communicating

by

way

of

a

conversation).

connection

context.

In

SQLJ,

a

Java

object

that

represents

a

connection

to

a

data

source.

CLPA

•

connection

context

Glossary

285

|
|
|
|
|
|
|
|

connection

declaration

clause.

In

SQLJ,

a

statement

that

declares

a

connection

to

a

data

source.

connection

handle.

The

data

object

containing

information

that

is

associated

with

a

connection

that

DB2

ODBC

manages.

This

includes

general

status

information,

transaction

status,

and

diagnostic

information.

connection

ID.

An

identifier

that

is

supplied

by

the

attachment

facility

and

that

is

associated

with

a

specific

address

space

connection.

consistency

token.

A

timestamp

that

is

used

to

generate

the

version

identifier

for

an

application.

See

also

version.

constant.

A

language

element

that

specifies

an

unchanging

value.

Constants

are

classified

as

string

constants

or

numeric

constants.

Contrast

with

variable.

constraint.

A

rule

that

limits

the

values

that

can

be

inserted,

deleted,

or

updated

in

a

table.

See

referential

constraint,

check

constraint,

and

unique

constraint.

context.

The

application’s

logical

connection

to

the

data

source

and

associated

internal

DB2

ODBC

connection

information

that

allows

the

application

to

direct

its

operations

to

a

data

source.

A

DB2

ODBC

context

represents

a

DB2

thread.

contracting

conversion.

A

process

that

occurs

when

the

length

of

a

converted

string

is

smaller

than

that

of

the

source

string.

For

example,

this

process

occurs

when

an

EBCDIC

mixed-data

string

that

contains

DBCS

characters

is

converted

to

ASCII

mixed

data;

the

converted

string

is

shorter

because

of

the

removal

of

the

shift

codes.

control

interval

(CI).

A

fixed-length

area

or

disk

in

which

VSAM

stores

records

and

creates

distributed

free

space.

Also,

in

a

key-sequenced

data

set

or

file,

the

set

of

records

that

an

entry

in

the

sequence-set

index

record

points

to.

The

control

interval

is

the

unit

of

information

that

VSAM

transmits

to

or

from

disk.

A

control

interval

always

includes

an

integral

number

of

physical

records.

control

interval

definition

field

(CIDF).

In

VSAM,

a

field

that

is

located

in

the

4

bytes

at

the

end

of

each

control

interval;

it

describes

the

free

space,

if

any,

in

the

control

interval.

conversation.

Communication,

which

is

based

on

LU

6.2

or

Advanced

Program-to-Program

Communication

(APPC),

between

an

application

and

a

remote

transaction

program

over

an

SNA

logical

unit-to-logical

unit

(LU-LU)

session

that

allows

communication

while

processing

a

transaction.

coordinator.

The

system

component

that

coordinates

the

commit

or

rollback

of

a

unit

of

work

that

includes

work

that

is

done

on

one

or

more

other

systems.

copy

pool.

A

named

set

of

SMS

storage

groups

that

contains

data

that

is

to

be

copied

collectively.

A

copy

pool

is

an

SMS

construct

that

lets

you

define

which

storage

groups

are

to

be

copied

by

using

FlashCopy®

functions.

HSM

determines

which

volumes

belong

to

a

copy

pool.

copy

target.

A

named

set

of

SMS

storage

groups

that

are

to

be

used

as

containers

for

copy

pool

volume

copies.

A

copy

target

is

an

SMS

construct

that

lets

you

define

which

storage

groups

are

to

be

used

as

containers

for

volumes

that

are

copied

by

using

FlashCopy

functions.

copy

version.

A

point-in-time

FlashCopy

copy

that

is

managed

by

HSM.

Each

copy

pool

has

a

version

parameter

that

specifies

how

many

copy

versions

are

maintained

on

disk.

correlated

columns.

A

relationship

between

the

value

of

one

column

and

the

value

of

another

column.

correlated

subquery.

A

subquery

(part

of

a

WHERE

or

HAVING

clause)

that

is

applied

to

a

row

or

group

of

rows

of

a

table

or

view

that

is

named

in

an

outer

subselect

statement.

correlation

ID.

An

identifier

that

is

associated

with

a

specific

thread.

In

TSO,

it

is

either

an

authorization

ID

or

the

job

name.

correlation

name.

An

identifier

that

designates

a

table,

a

view,

or

individual

rows

of

a

table

or

view

within

a

single

SQL

statement.

It

can

be

defined

in

any

FROM

clause

or

in

the

first

clause

of

an

UPDATE

or

DELETE

statement.

cost

category.

A

category

into

which

DB2

places

cost

estimates

for

SQL

statements

at

the

time

the

statement

is

bound.

A

cost

estimate

can

be

placed

in

either

of

the

following

cost

categories:

v

A:

Indicates

that

DB2

had

enough

information

to

make

a

cost

estimate

without

using

default

values.

v

B:

Indicates

that

some

condition

exists

for

which

DB2

was

forced

to

use

default

values

for

its

estimate.

The

cost

category

is

externalized

in

the

COST_CATEGORY

column

of

the

DSN_STATEMNT_TABLE

when

a

statement

is

explained.

coupling

facility.

A

special

PR/SM™

LPAR

logical

partition

that

runs

the

coupling

facility

control

program

and

provides

high-speed

caching,

list

processing,

and

locking

functions

in

a

Parallel

Sysplex®.

coupling

facility

resource

management.

A

component

of

z/OS

that

provides

the

services

to

manage

coupling

facility

resources

in

a

Parallel

Sysplex.

This

management

includes

the

enforcement

of

CFRM

policies

to

ensure

that

the

coupling

facility

and

structure

requirements

are

satisfied.

connection

declaration

clause

•

coupling

facility

resource

management

286

Application

Programming

Guide

and

Reference

for

Java™

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

CP.

Central

processor.

CPC.

Central

processor

complex.

C++

member.

A

data

object

or

function

in

a

structure,

union,

or

class.

C++

member

function.

An

operator

or

function

that

is

declared

as

a

member

of

a

class.

A

member

function

has

access

to

the

private

and

protected

data

members

and

to

the

member

functions

of

objects

in

its

class.

Member

functions

are

also

called

methods.

C++

object.

(1)

A

region

of

storage.

An

object

is

created

when

a

variable

is

defined

or

a

new

function

is

invoked.

(2)

An

instance

of

a

class.

CRC.

Command

recognition

character.

CRCR.

Conditional

restart

control

record.

See

also

conditional

restart.

create

link

pack

area

(CLPA).

An

option

that

is

used

during

IPL

to

initialize

the

link

pack

pageable

area.

created

temporary

table.

A

table

that

holds

temporary

data

and

is

defined

with

the

SQL

statement

CREATE

GLOBAL

TEMPORARY

TABLE.

Information

about

created

temporary

tables

is

stored

in

the

DB2

catalog,

so

this

kind

of

table

is

persistent

and

can

be

shared

across

application

processes.

Contrast

with

declared

temporary

table.

See

also

temporary

table.

cross-memory

linkage.

A

method

for

invoking

a

program

in

a

different

address

space.

The

invocation

is

synchronous

with

respect

to

the

caller.

cross-system

coupling

facility

(XCF).

A

component

of

z/OS

that

provides

functions

to

support

cooperation

between

authorized

programs

that

run

within

a

Sysplex.

cross-system

extended

services

(XES).

A

set

of

z/OS

services

that

allow

multiple

instances

of

an

application

or

subsystem,

running

on

different

systems

in

a

Sysplex

environment,

to

implement

high-performance,

high-availability

data

sharing

by

using

a

coupling

facility.

CS.

Cursor

stability.

CSA.

Common

service

area.

CT.

Cursor

table.

current

data.

Data

within

a

host

structure

that

is

current

with

(identical

to)

the

data

within

the

base

table.

current

SQL

ID.

An

ID

that,

at

a

single

point

in

time,

holds

the

privileges

that

are

exercised

when

certain

dynamic

SQL

statements

run.

The

current

SQL

ID

can

be

a

primary

authorization

ID

or

a

secondary

authorization

ID.

current

status

rebuild.

The

second

phase

of

restart

processing

during

which

the

status

of

the

subsystem

is

reconstructed

from

information

on

the

log.

cursor.

A

named

control

structure

that

an

application

program

uses

to

point

to

a

single

row

or

multiple

rows

within

some

ordered

set

of

rows

of

a

result

table.

A

cursor

can

be

used

to

retrieve,

update,

or

delete

rows

from

a

result

table.

cursor

sensitivity.

The

degree

to

which

database

updates

are

visible

to

the

subsequent

FETCH

statements

in

a

cursor.

A

cursor

can

be

sensitive

to

changes

that

are

made

with

positioned

update

and

delete

statements

specifying

the

name

of

that

cursor.

A

cursor

can

also

be

sensitive

to

changes

that

are

made

with

searched

update

or

delete

statements,

or

with

cursors

other

than

this

cursor.

These

changes

can

be

made

by

this

application

process

or

by

another

application

process.

cursor

stability

(CS).

The

isolation

level

that

provides

maximum

concurrency

without

the

ability

to

read

uncommitted

data.

With

cursor

stability,

a

unit

of

work

holds

locks

only

on

its

uncommitted

changes

and

on

the

current

row

of

each

of

its

cursors.

cursor

table

(CT).

The

copy

of

the

skeleton

cursor

table

that

is

used

by

an

executing

application

process.

cycle.

A

set

of

tables

that

can

be

ordered

so

that

each

table

is

a

descendent

of

the

one

before

it,

and

the

first

table

is

a

descendent

of

the

last

table.

A

self-referencing

table

is

a

cycle

with

a

single

member.

D

DAD.

See

Document

access

definition.

disk.

A

direct-access

storage

device

that

records

data

magnetically.

database.

A

collection

of

tables,

or

a

collection

of

table

spaces

and

index

spaces.

database

access

thread.

A

thread

that

accesses

data

at

the

local

subsystem

on

behalf

of

a

remote

subsystem.

database

administrator

(DBA).

An

individual

who

is

responsible

for

designing,

developing,

operating,

safeguarding,

maintaining,

and

using

a

database.

database

alias.

The

name

of

the

target

server

if

different

from

the

location

name.

The

database

alias

name

is

used

to

provide

the

name

of

the

database

server

as

it

is

known

to

the

network.

When

a

database

alias

name

is

defined,

the

location

name

is

used

by

the

application

to

reference

the

server,

but

the

database

alias

name

is

used

to

identify

the

database

server

to

be

accessed.

Any

fully

qualified

object

names

within

any

CP

•

database

alias

Glossary

287

|

|

|

|

|

|

|

|

|

|

|

SQL

statements

are

not

modified

and

are

sent

unchanged

to

the

database

server.

database

descriptor

(DBD).

An

internal

representation

of

a

DB2

database

definition,

which

reflects

the

data

definition

that

is

in

the

DB2

catalog.

The

objects

that

are

defined

in

a

database

descriptor

are

table

spaces,

tables,

indexes,

index

spaces,

relationships,

check

constraints,

and

triggers.

A

DBD

also

contains

information

about

accessing

tables

in

the

database.

database

exception

status.

An

indication

that

something

is

wrong

with

a

database.

All

members

of

a

data

sharing

group

must

know

and

share

the

exception

status

of

databases.

database

identifier

(DBID).

An

internal

identifier

of

the

database.

database

management

system

(DBMS).

A

software

system

that

controls

the

creation,

organization,

and

modification

of

a

database

and

the

access

to

the

data

that

is

stored

within

it.

database

request

module

(DBRM).

A

data

set

member

that

is

created

by

the

DB2

precompiler

and

that

contains

information

about

SQL

statements.

DBRMs

are

used

in

the

bind

process.

database

server.

The

target

of

a

request

from

a

local

application

or

an

intermediate

database

server.

In

the

DB2

environment,

the

database

server

function

is

provided

by

the

distributed

data

facility

to

access

DB2

data

from

local

applications,

or

from

a

remote

database

server

that

acts

as

an

intermediate

database

server.

data

currency.

The

state

in

which

data

that

is

retrieved

into

a

host

variable

in

your

program

is

a

copy

of

data

in

the

base

table.

data

definition

name

(ddname).

The

name

of

a

data

definition

(DD)

statement

that

corresponds

to

a

data

control

block

containing

the

same

name.

data

dictionary.

A

repository

of

information

about

an

organization’s

application

programs,

databases,

logical

data

models,

users,

and

authorizations.

A

data

dictionary

can

be

manual

or

automated.

data-driven

business

rules.

Constraints

on

particular

data

values

that

exist

as

a

result

of

requirements

of

the

business.

Data

Language/I

(DL/I).

The

IMS

data

manipulation

language;

a

common

high-level

interface

between

a

user

application

and

IMS.

data

mart.

A

small

data

warehouse

that

applies

to

a

single

department

or

team.

See

also

data

warehouse.

data

mining.

The

process

of

collecting

critical

business

information

from

a

data

warehouse,

correlating

it,

and

uncovering

associations,

patterns,

and

trends.

data

partition.

A

VSAM

data

set

that

is

contained

within

a

partitioned

table

space.

data-partitioned

secondary

index

(DPSI).

A

secondary

index

that

is

partitioned.

The

index

is

partitioned

according

to

the

underlying

data.

data

sharing.

The

ability

of

two

or

more

DB2

subsystems

to

directly

access

and

change

a

single

set

of

data.

data

sharing

group.

A

collection

of

one

or

more

DB2

subsystems

that

directly

access

and

change

the

same

data

while

maintaining

data

integrity.

data

sharing

member.

A

DB2

subsystem

that

is

assigned

by

XCF

services

to

a

data

sharing

group.

data

source.

A

local

or

remote

relational

or

non-relational

data

manager

that

is

capable

of

supporting

data

access

via

an

ODBC

driver

that

supports

the

ODBC

APIs.

In

the

case

of

DB2

UDB

for

z/OS,

the

data

sources

are

always

relational

database

managers.

data

space.

In

releases

prior

to

DB2

UDB

for

z/OS,

Version

8,

a

range

of

up

to

2

GB

of

contiguous

virtual

storage

addresses

that

a

program

can

directly

manipulate.

Unlike

an

address

space,

a

data

space

can

hold

only

data;

it

does

not

contain

common

areas,

system

data,

or

programs.

data

type.

An

attribute

of

columns,

literals,

host

variables,

special

registers,

and

the

results

of

functions

and

expressions.

data

warehouse.

A

system

that

provides

critical

business

information

to

an

organization.

The

data

warehouse

system

cleanses

the

data

for

accuracy

and

currency,

and

then

presents

the

data

to

decision

makers

so

that

they

can

interpret

and

use

it

effectively

and

efficiently.

date.

A

three-part

value

that

designates

a

day,

month,

and

year.

date

duration.

A

decimal

integer

that

represents

a

number

of

years,

months,

and

days.

datetime

value.

A

value

of

the

data

type

DATE,

TIME,

or

TIMESTAMP.

DBA.

Database

administrator.

DBCLOB.

Double-byte

character

large

object.

DBCS.

Double-byte

character

set.

DBD.

Database

descriptor.

database

descriptor

(DBD)

•

DBD

288

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

DBID.

Database

identifier.

DBMS.

Database

management

system.

DBRM.

Database

request

module.

DB2

catalog.

Tables

that

are

maintained

by

DB2

and

contain

descriptions

of

DB2

objects,

such

as

tables,

views,

and

indexes.

DB2

command.

An

instruction

to

the

DB2

subsystem

that

a

user

enters

to

start

or

stop

DB2,

to

display

information

on

current

users,

to

start

or

stop

databases,

to

display

information

on

the

status

of

databases,

and

so

on.

DB2

for

VSE

&

VM.

The

IBM

DB2

relational

database

management

system

for

the

VSE

and

VM

operating

systems.

DB2I.

DB2

Interactive.

DB2

Interactive

(DB2I).

The

DB2

facility

that

provides

for

the

execution

of

SQL

statements,

DB2

(operator)

commands,

programmer

commands,

and

utility

invocation.

DB2I

Kanji

Feature.

The

tape

that

contains

the

panels

and

jobs

that

allow

a

site

to

display

DB2I

panels

in

Kanji.

DB2

PM.

DB2

Performance

Monitor.

DB2

thread.

The

DB2

structure

that

describes

an

application’s

connection,

traces

its

progress,

processes

resource

functions,

and

delimits

its

accessibility

to

DB2

resources

and

services.

DCLGEN.

Declarations

generator.

DDF.

Distributed

data

facility.

ddname.

Data

definition

name.

deadlock.

Unresolvable

contention

for

the

use

of

a

resource,

such

as

a

table

or

an

index.

declarations

generator

(DCLGEN).

A

subcomponent

of

DB2

that

generates

SQL

table

declarations

and

COBOL,

C,

or

PL/I

data

structure

declarations

that

conform

to

the

table.

The

declarations

are

generated

from

DB2

system

catalog

information.

DCLGEN

is

also

a

DSN

subcommand.

declared

temporary

table.

A

table

that

holds

temporary

data

and

is

defined

with

the

SQL

statement

DECLARE

GLOBAL

TEMPORARY

TABLE.

Information

about

declared

temporary

tables

is

not

stored

in

the

DB2

catalog,

so

this

kind

of

table

is

not

persistent

and

can

be

used

only

by

the

application

process

that

issued

the

DECLARE

statement.

Contrast

with

created

temporary

table.

See

also

temporary

table.

default

value.

A

predetermined

value,

attribute,

or

option

that

is

assumed

when

no

other

is

explicitly

specified.

deferred

embedded

SQL.

SQL

statements

that

are

neither

fully

static

nor

fully

dynamic.

Like

static

statements,

they

are

embedded

within

an

application,

but

like

dynamic

statements,

they

are

prepared

during

the

execution

of

the

application.

deferred

write.

The

process

of

asynchronously

writing

changed

data

pages

to

disk.

degree

of

parallelism.

The

number

of

concurrently

executed

operations

that

are

initiated

to

process

a

query.

delete-connected.

A

table

that

is

a

dependent

of

table

P

or

a

dependent

of

a

table

to

which

delete

operations

from

table

P

cascade.

delete

hole.

The

location

on

which

a

cursor

is

positioned

when

a

row

in

a

result

table

is

refetched

and

the

row

no

longer

exists

on

the

base

table,

because

another

cursor

deleted

the

row

between

the

time

the

cursor

first

included

the

row

in

the

result

table

and

the

time

the

cursor

tried

to

refetch

it.

delete

rule.

The

rule

that

tells

DB2

what

to

do

to

a

dependent

row

when

a

parent

row

is

deleted.

For

each

relationship,

the

rule

might

be

CASCADE,

RESTRICT,

SET

NULL,

or

NO

ACTION.

delete

trigger.

A

trigger

that

is

defined

with

the

triggering

SQL

operation

DELETE.

delimited

identifier.

A

sequence

of

characters

that

are

enclosed

within

double

quotation

marks

(").

The

sequence

must

consist

of

a

letter

followed

by

zero

or

more

characters,

each

of

which

is

a

letter,

digit,

or

the

underscore

character

(_).

delimiter

token.

A

string

constant,

a

delimited

identifier,

an

operator

symbol,

or

any

of

the

special

characters

that

are

shown

in

DB2

syntax

diagrams.

denormalization.

A

key

step

in

the

task

of

building

a

physical

relational

database

design.

Denormalization

is

the

intentional

duplication

of

columns

in

multiple

tables,

and

the

consequence

is

increased

data

redundancy.

Denormalization

is

sometimes

necessary

to

minimize

performance

problems.

Contrast

with

normalization.

dependent.

An

object

(row,

table,

or

table

space)

that

has

at

least

one

parent.

The

object

is

also

said

to

be

a

dependent

(row,

table,

or

table

space)

of

its

parent.

See

also

parent

row,

parent

table,

parent

table

space.

dependent

row.

A

row

that

contains

a

foreign

key

that

matches

the

value

of

a

primary

key

in

the

parent

row.

dependent

table.

A

table

that

is

a

dependent

in

at

least

one

referential

constraint.

DBID

•

dependent

table

Glossary

289

DES-based

authenticator.

An

authenticator

that

is

generated

using

the

DES

algorithm.

descendent.

An

object

that

is

a

dependent

of

an

object

or

is

the

dependent

of

a

descendent

of

an

object.

descendent

row.

A

row

that

is

dependent

on

another

row,

or

a

row

that

is

a

descendent

of

a

dependent

row.

descendent

table.

A

table

that

is

a

dependent

of

another

table,

or

a

table

that

is

a

descendent

of

a

dependent

table.

deterministic

function.

A

user-defined

function

whose

result

is

dependent

on

the

values

of

the

input

arguments.

That

is,

successive

invocations

with

the

same

input

values

produce

the

same

answer.

Sometimes

referred

to

as

a

not-variant

function.

Contrast

this

with

an

nondeterministic

function

(sometimes

called

a

variant

function),

which

might

not

always

produce

the

same

result

for

the

same

inputs.

DFP.

Data

Facility

Product

(in

z/OS).

DFSMS.

Data

Facility

Storage

Management

Subsystem

(in

z/OS).

Also

called

Storage

Management

Subsystem

(SMS).

DFSMSdss™.

The

data

set

services

(dss)

component

of

DFSMS

(in

z/OS).

DFSMShsm™.

The

hierarchical

storage

manager

(hsm)

component

of

DFSMS

(in

z/OS).

dimension.

A

data

category

such

as

time,

products,

or

markets.

The

elements

of

a

dimension

are

referred

to

as

members.

Dimensions

offer

a

very

concise,

intuitive

way

of

organizing

and

selecting

data

for

retrieval,

exploration,

and

analysis.

See

also

dimension

table.

dimension

table.

The

representation

of

a

dimension

in

a

star

schema.

Each

row

in

a

dimension

table

represents

all

of

the

attributes

for

a

particular

member

of

the

dimension.

See

also

dimension,

star

schema,

and

star

join.

directory.

The

DB2

system

database

that

contains

internal

objects

such

as

database

descriptors

and

skeleton

cursor

tables.

distinct

type.

A

user-defined

data

type

that

is

internally

represented

as

an

existing

type

(its

source

type),

but

is

considered

to

be

a

separate

and

incompatible

type

for

semantic

purposes.

distributed

data.

Data

that

resides

on

a

DBMS

other

than

the

local

system.

distributed

data

facility

(DDF).

A

set

of

DB2

components

through

which

DB2

communicates

with

another

relational

database

management

system.

Distributed

Relational

Database

Architecture™

(DRDA

).

A

connection

protocol

for

distributed

relational

database

processing

that

is

used

by

IBM’s

relational

database

products.

DRDA

includes

protocols

for

communication

between

an

application

and

a

remote

relational

database

management

system,

and

for

communication

between

relational

database

management

systems.

See

also

DRDA

access.

DL/I.

Data

Language/I.

DNS.

Domain

name

server.

document

access

definition

(DAD).

Used

to

define

the

indexing

scheme

for

an

XML

column

or

the

mapping

scheme

of

an

XML

collection.

It

can

be

used

to

enable

an

XML

Extender

column

of

an

XML

collection,

which

is

XML

formatted.

domain.

The

set

of

valid

values

for

an

attribute.

domain

name.

The

name

by

which

TCP/IP

applications

refer

to

a

TCP/IP

host

within

a

TCP/IP

network.

domain

name

server

(DNS).

A

special

TCP/IP

network

server

that

manages

a

distributed

directory

that

is

used

to

map

TCP/IP

host

names

to

IP

addresses.

double-byte

character

large

object

(DBCLOB).

A

sequence

of

bytes

representing

double-byte

characters

where

the

size

of

the

values

can

be

up

to

2

GB.

In

general,

DBCLOB

values

are

used

whenever

a

double-byte

character

string

might

exceed

the

limits

of

the

VARGRAPHIC

type.

double-byte

character

set

(DBCS).

A

set

of

characters,

which

are

used

by

national

languages

such

as

Japanese

and

Chinese,

that

have

more

symbols

than

can

be

represented

by

a

single

byte.

Each

character

is

2

bytes

in

length.

Contrast

with

single-byte

character

set

and

multibyte

character

set.

double-precision

floating

point

number.

A

64-bit

approximate

representation

of

a

real

number.

downstream.

The

set

of

nodes

in

the

syncpoint

tree

that

is

connected

to

the

local

DBMS

as

a

participant

in

the

execution

of

a

two-phase

commit.

DPSI.

Data-partitioned

secondary

index.

drain.

The

act

of

acquiring

a

locked

resource

by

quiescing

access

to

that

object.

drain

lock.

A

lock

on

a

claim

class

that

prevents

a

claim

from

occurring.

DRDA.

Distributed

Relational

Database

Architecture.

DRDA

access.

An

open

method

of

accessing

distributed

data

that

you

can

use

to

can

connect

to

another

database

server

to

execute

packages

that

were

previously

bound

at

the

server

location.

You

use

the

DES-based

authenticator

•

DRDA

access

290

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|

|

|

|

|

|

|

SQL

CONNECT

statement

or

an

SQL

statement

with

a

three-part

name

to

identify

the

server.

Contrast

with

private

protocol

access.

DSN.

(1)

The

default

DB2

subsystem

name.

(2)

The

name

of

the

TSO

command

processor

of

DB2.

(3)

The

first

three

characters

of

DB2

module

and

macro

names.

duration.

A

number

that

represents

an

interval

of

time.

See

also

date

duration,

labeled

duration,

and

time

duration.

dynamic

cursor.

A

named

control

structure

that

an

application

program

uses

to

change

the

size

of

the

result

table

and

the

order

of

its

rows

after

the

cursor

is

opened.

Contrast

with

static

cursor.

dynamic

dump.

A

dump

that

is

issued

during

the

execution

of

a

program,

usually

under

the

control

of

that

program.

dynamic

SQL.

SQL

statements

that

are

prepared

and

executed

within

an

application

program

while

the

program

is

executing.

In

dynamic

SQL,

the

SQL

source

is

contained

in

host

language

variables

rather

than

being

coded

into

the

application

program.

The

SQL

statement

can

change

several

times

during

the

application

program’s

execution.

dynamic

statement

cache

pool.

A

cache,

located

above

the

2-GB

storage

line,

that

holds

dynamic

statements.

E

EA-enabled

table

space.

A

table

space

or

index

space

that

is

enabled

for

extended

addressability

and

that

contains

individual

partitions

(or

pieces,

for

LOB

table

spaces)

that

are

greater

than

4

GB.

EB.

See

exabyte.

EBCDIC.

Extended

binary

coded

decimal

interchange

code.

An

encoding

scheme

that

is

used

to

represent

character

data

in

the

z/OS,

VM,

VSE,

and

iSeries™

environments.

Contrast

with

ASCII

and

Unicode.

e-business.

The

transformation

of

key

business

processes

through

the

use

of

Internet

technologies.

EDM

pool.

A

pool

of

main

storage

that

is

used

for

database

descriptors,

application

plans,

authorization

cache,

application

packages.

EID.

Event

identifier.

embedded

SQL.

SQL

statements

that

are

coded

within

an

application

program.

See

static

SQL.

enclave.

In

Language

Environment

,

an

independent

collection

of

routines,

one

of

which

is

designated

as

the

main

routine.

An

enclave

is

similar

to

a

program

or

run

unit.

encoding

scheme.

A

set

of

rules

to

represent

character

data

(ASCII,

EBCDIC,

or

Unicode).

entity.

A

significant

object

of

interest

to

an

organization.

enumerated

list.

A

set

of

DB2

objects

that

are

defined

with

a

LISTDEF

utility

control

statement

in

which

pattern-matching

characters

(*,

%,

_

or

?)

are

not

used.

environment.

A

collection

of

names

of

logical

and

physical

resources

that

are

used

to

support

the

performance

of

a

function.

environment

handle.

In

DB2

ODBC,

the

data

object

that

contains

global

information

regarding

the

state

of

the

application.

An

environment

handle

must

be

allocated

before

a

connection

handle

can

be

allocated.

Only

one

environment

handle

can

be

allocated

per

application.

EOM.

End

of

memory.

EOT.

End

of

task.

equijoin.

A

join

operation

in

which

the

join-condition

has

the

form

expression

=

expression.

error

page

range.

A

range

of

pages

that

are

considered

to

be

physically

damaged.

DB2

does

not

allow

users

to

access

any

pages

that

fall

within

this

range.

escape

character.

The

symbol

that

is

used

to

enclose

an

SQL

delimited

identifier.

The

escape

character

is

the

double

quotation

mark

("),

except

in

COBOL

applications,

where

the

user

assigns

the

symbol,

which

is

either

a

double

quotation

mark

or

an

apostrophe

(').

ESDS.

Entry

sequenced

data

set.

ESMT.

External

subsystem

module

table

(in

IMS).

EUR.

IBM

European

Standards.

exabyte.

For

processor,

real

and

virtual

storage

capacities

and

channel

volume:

1

152

921

504

606

846

976

bytes

or

260.

exception

table.

A

table

that

holds

rows

that

violate

referential

constraints

or

check

constraints

that

the

CHECK

DATA

utility

finds.

exclusive

lock.

A

lock

that

prevents

concurrently

executing

application

processes

from

reading

or

changing

data.

Contrast

with

share

lock.

executable

statement.

An

SQL

statement

that

can

be

embedded

in

an

application

program,

dynamically

prepared

and

executed,

or

issued

interactively.

execution

context.

In

SQLJ,

a

Java

object

that

can

be

used

to

control

the

execution

of

SQL

statements.

DSN

•

execution

context

Glossary

291

|
|
|
|

|
|
|

|

|
|
|

|

|

|

exit

routine.

A

user-written

(or

IBM-provided

default)

program

that

receives

control

from

DB2

to

perform

specific

functions.

Exit

routines

run

as

extensions

of

DB2.

expanding

conversion.

A

process

that

occurs

when

the

length

of

a

converted

string

is

greater

than

that

of

the

source

string.

For

example,

this

process

occurs

when

an

ASCII

mixed-data

string

that

contains

DBCS

characters

is

converted

to

an

EBCDIC

mixed-data

string;

the

converted

string

is

longer

because

of

the

addition

of

shift

codes.

explicit

hierarchical

locking.

Locking

that

is

used

to

make

the

parent-child

relationship

between

resources

known

to

IRLM.

This

kind

of

locking

avoids

global

locking

overhead

when

no

inter-DB2

interest

exists

on

a

resource.

exposed

name.

A

correlation

name

or

a

table

or

view

name

for

which

a

correlation

name

is

not

specified.

Names

that

are

specified

in

a

FROM

clause

are

exposed

or

non-exposed.

expression.

An

operand

or

a

collection

of

operators

and

operands

that

yields

a

single

value.

extended

recovery

facility

(XRF).

A

facility

that

minimizes

the

effect

of

failures

in

z/OS,

VTAM

,

the

host

processor,

or

high-availability

applications

during

sessions

between

high-availability

applications

and

designated

terminals.

This

facility

provides

an

alternative

subsystem

to

take

over

sessions

from

the

failing

subsystem.

Extensible

Markup

Language

(XML).

A

standard

metalanguage

for

defining

markup

languages

that

is

a

subset

of

Standardized

General

Markup

Language

(SGML).

The

less

complex

nature

of

XML

makes

it

easier

to

write

applications

that

handle

document

types,

to

author

and

manage

structured

information,

and

to

transmit

and

share

structured

information

across

diverse

computing

environments.

external

function.

A

function

for

which

the

body

is

written

in

a

programming

language

that

takes

scalar

argument

values

and

produces

a

scalar

result

for

each

invocation.

Contrast

with

sourced

function,

built-in

function,

and

SQL

function.

external

procedure.

A

user-written

application

program

that

can

be

invoked

with

the

SQL

CALL

statement,

which

is

written

in

a

programming

language.

Contrast

with

SQL

procedure.

external

routine.

A

user-defined

function

or

stored

procedure

that

is

based

on

code

that

is

written

in

an

external

programming

language.

external

subsystem

module

table

(ESMT).

In

IMS,

the

table

that

specifies

which

attachment

modules

must

be

loaded.

F

failed

member

state.

A

state

of

a

member

of

a

data

sharing

group.

When

a

member

fails,

the

XCF

permanently

records

the

failed

member

state.

This

state

usually

means

that

the

member’s

task,

address

space,

or

z/OS

system

terminated

before

the

state

changed

from

active

to

quiesced.

fallback.

The

process

of

returning

to

a

previous

release

of

DB2

after

attempting

or

completing

migration

to

a

current

release.

false

global

lock

contention.

A

contention

indication

from

the

coupling

facility

when

multiple

lock

names

are

hashed

to

the

same

indicator

and

when

no

real

contention

exists.

fan

set.

A

direct

physical

access

path

to

data,

which

is

provided

by

an

index,

hash,

or

link;

a

fan

set

is

the

means

by

which

the

data

manager

supports

the

ordering

of

data.

federated

database.

The

combination

of

a

DB2

Universal

Database

server

(in

Linux,

UNIX®,

and

Windows®

environments)

and

multiple

data

sources

to

which

the

server

sends

queries.

In

a

federated

database

system,

a

client

application

can

use

a

single

SQL

statement

to

join

data

that

is

distributed

across

multiple

database

management

systems

and

can

view

the

data

as

if

it

were

local.

fetch

orientation.

The

specification

of

the

desired

placement

of

the

cursor

as

part

of

a

FETCH

statement

(for

example,

BEFORE,

AFTER,

NEXT,

PRIOR,

CURRENT,

FIRST,

LAST,

ABSOLUTE,

and

RELATIVE).

field

procedure.

A

user-written

exit

routine

that

is

designed

to

receive

a

single

value

and

transform

(encode

or

decode)

it

in

any

way

the

user

can

specify.

filter

factor.

A

number

between

zero

and

one

that

estimates

the

proportion

of

rows

in

a

table

for

which

a

predicate

is

true.

fixed-length

string.

A

character

or

graphic

string

whose

length

is

specified

and

cannot

be

changed.

Contrast

with

varying-length

string.

FlashCopy.

A

function

on

the

IBM

Enterprise

Storage

Server®

that

can

create

a

point-in-time

copy

of

data

while

an

application

is

running.

foreign

key.

A

column

or

set

of

columns

in

a

dependent

table

of

a

constraint

relationship.

The

key

must

have

the

same

number

of

columns,

with

the

same

descriptions,

as

the

primary

key

of

the

parent

table.

Each

foreign

key

value

must

either

match

a

parent

key

value

in

the

related

parent

table

or

be

null.

forest.

An

ordered

set

of

subtrees

of

XML

nodes.

exit

routine

•

forest

292

Application

Programming

Guide

and

Reference

for

Java™

|

forget.

In

a

two-phase

commit

operation,

(1)

the

vote

that

is

sent

to

the

prepare

phase

when

the

participant

has

not

modified

any

data.

The

forget

vote

allows

a

participant

to

release

locks

and

forget

about

the

logical

unit

of

work.

This

is

also

referred

to

as

the

read-only

vote.

(2)

The

response

to

the

committed

request

in

the

second

phase

of

the

operation.

forward

log

recovery.

The

third

phase

of

restart

processing

during

which

DB2

processes

the

log

in

a

forward

direction

to

apply

all

REDO

log

records.

free

space.

The

total

amount

of

unused

space

in

a

page;

that

is,

the

space

that

is

not

used

to

store

records

or

control

information

is

free

space.

full

outer

join.

The

result

of

a

join

operation

that

includes

the

matched

rows

of

both

tables

that

are

being

joined

and

preserves

the

unmatched

rows

of

both

tables.

See

also

join.

fullselect.

A

subselect,

a

values-clause,

or

a

number

of

both

that

are

combined

by

set

operators.

Fullselect

specifies

a

result

table.

If

UNION

is

not

used,

the

result

of

the

fullselect

is

the

result

of

the

specified

subselect.

fully

escaped

mapping.

A

mapping

from

an

SQL

identifier

to

an

XML

name

when

the

SQL

identifier

is

a

column

name.

function.

A

mapping,

which

is

embodied

as

a

program

(the

function

body)

that

is

invocable

by

means

of

zero

or

more

input

values

(arguments)

to

a

single

value

(the

result).

See

also

column

function

and

scalar

function.

Functions

can

be

user-defined,

built-in,

or

generated

by

DB2.

(See

also

built-in

function,

cast

function,

external

function,

sourced

function,

SQL

function,

and

user-defined

function.)

function

definer.

The

authorization

ID

of

the

owner

of

the

schema

of

the

function

that

is

specified

in

the

CREATE

FUNCTION

statement.

function

implementer.

The

authorization

ID

of

the

owner

of

the

function

program

and

function

package.

function

package.

A

package

that

results

from

binding

the

DBRM

for

a

function

program.

function

package

owner.

The

authorization

ID

of

the

user

who

binds

the

function

program’s

DBRM

into

a

function

package.

function

resolution.

The

process,

internal

to

the

DBMS,

by

which

a

function

invocation

is

bound

to

a

particular

function

instance.

This

process

uses

the

function

name,

the

data

types

of

the

arguments,

and

a

list

of

the

applicable

schema

names

(called

the

SQL

path)

to

make

the

selection.

This

process

is

sometimes

called

function

selection.

function

selection.

See

function

resolution.

function

signature.

The

logical

concatenation

of

a

fully

qualified

function

name

with

the

data

types

of

all

of

its

parameters.

G

GB.

Gigabyte

(1

073

741

824

bytes).

GBP.

Group

buffer

pool.

GBP-dependent.

The

status

of

a

page

set

or

page

set

partition

that

is

dependent

on

the

group

buffer

pool.

Either

read/write

interest

is

active

among

DB2

subsystems

for

this

page

set,

or

the

page

set

has

changed

pages

in

the

group

buffer

pool

that

have

not

yet

been

cast

out

to

disk.

generalized

trace

facility

(GTF).

A

z/OS

service

program

that

records

significant

system

events

such

as

I/O

interrupts,

SVC

interrupts,

program

interrupts,

or

external

interrupts.

generic

resource

name.

A

name

that

VTAM

uses

to

represent

several

application

programs

that

provide

the

same

function

in

order

to

handle

session

distribution

and

balancing

in

a

Sysplex

environment.

getpage.

An

operation

in

which

DB2

accesses

a

data

page.

global

lock.

A

lock

that

provides

concurrency

control

within

and

among

DB2

subsystems.

The

scope

of

the

lock

is

across

all

DB2

subsystems

of

a

data

sharing

group.

global

lock

contention.

Conflicts

on

locking

requests

between

different

DB2

members

of

a

data

sharing

group

when

those

members

are

trying

to

serialize

shared

resources.

governor.

See

resource

limit

facility.

graphic

string.

A

sequence

of

DBCS

characters.

gross

lock.

The

shared,

update,

or

exclusive

mode

locks

on

a

table,

partition,

or

table

space.

group

buffer

pool

(GBP).

A

coupling

facility

cache

structure

that

is

used

by

a

data

sharing

group

to

cache

data

and

to

ensure

that

the

data

is

consistent

for

all

members.

group

buffer

pool

duplexing.

The

ability

to

write

data

to

two

instances

of

a

group

buffer

pool

structure:

a

primary

group

buffer

pool

and

a

secondary

group

buffer

pool.

z/OS

publications

refer

to

these

instances

as

the

"old"

(for

primary)

and

"new"

(for

secondary)

structures.

group

level.

The

release

level

of

a

data

sharing

group,

which

is

established

when

the

first

member

migrates

to

a

new

release.

forget

•

group

level

Glossary

293

|
|
|

group

name.

The

z/OS

XCF

identifier

for

a

data

sharing

group.

group

restart.

A

restart

of

at

least

one

member

of

a

data

sharing

group

after

the

loss

of

either

locks

or

the

shared

communications

area.

GTF.

Generalized

trace

facility.

H

handle.

In

DB2

ODBC,

a

variable

that

refers

to

a

data

structure

and

associated

resources.

See

also

statement

handle,

connection

handle,

and

environment

handle.

help

panel.

A

screen

of

information

that

presents

tutorial

text

to

assist

a

user

at

the

workstation

or

terminal.

heuristic

damage.

The

inconsistency

in

data

between

one

or

more

participants

that

results

when

a

heuristic

decision

to

resolve

an

indoubt

LUW

at

one

or

more

participants

differs

from

the

decision

that

is

recorded

at

the

coordinator.

heuristic

decision.

A

decision

that

forces

indoubt

resolution

at

a

participant

by

means

other

than

automatic

resynchronization

between

coordinator

and

participant.

hole.

A

row

of

the

result

table

that

cannot

be

accessed

because

of

a

delete

or

an

update

that

has

been

performed

on

the

row.

See

also

delete

hole

and

update

hole.

home

address

space.

The

area

of

storage

that

z/OS

currently

recognizes

as

dispatched.

host.

The

set

of

programs

and

resources

that

are

available

on

a

given

TCP/IP

instance.

host

expression.

A

Java

variable

or

expression

that

is

referenced

by

SQL

clauses

in

an

SQLJ

application

program.

host

identifier.

A

name

that

is

declared

in

the

host

program.

host

language.

A

programming

language

in

which

you

can

embed

SQL

statements.

host

program.

An

application

program

that

is

written

in

a

host

language

and

that

contains

embedded

SQL

statements.

host

structure.

In

an

application

program,

a

structure

that

is

referenced

by

embedded

SQL

statements.

host

variable.

In

an

application

program,

an

application

variable

that

is

referenced

by

embedded

SQL

statements.

host

variable

array.

An

array

of

elements,

each

of

which

corresponds

to

a

value

for

a

column.

The

dimension

of

the

array

determines

the

maximum

number

of

rows

for

which

the

array

can

be

used.

HSM.

Hierarchical

storage

manager.

HTML.

Hypertext

Markup

Language,

a

standard

method

for

presenting

Web

data

to

users.

HTTP.

Hypertext

Transfer

Protocol,

a

communication

protocol

that

the

Web

uses.

I

ICF.

Integrated

catalog

facility.

IDCAMS.

An

IBM

program

that

is

used

to

process

access

method

services

commands.

It

can

be

invoked

as

a

job

or

jobstep,

from

a

TSO

terminal,

or

from

within

a

user’s

application

program.

IDCAMS

LISTCAT.

A

facility

for

obtaining

information

that

is

contained

in

the

access

method

services

catalog.

identify.

A

request

that

an

attachment

service

program

in

an

address

space

that

is

separate

from

DB2

issues

thorough

the

z/OS

subsystem

interface

to

inform

DB2

of

its

existence

and

to

initiate

the

process

of

becoming

connected

to

DB2.

identity

column.

A

column

that

provides

a

way

for

DB2

to

automatically

generate

a

numeric

value

for

each

row.

The

generated

values

are

unique

if

cycling

is

not

used.

Identity

columns

are

defined

with

the

AS

IDENTITY

clause.

Uniqueness

of

values

can

be

ensured

by

defining

a

unique

index

that

contains

only

the

identity

column.

A

table

can

have

no

more

than

one

identity

column.

IFCID.

Instrumentation

facility

component

identifier.

IFI.

Instrumentation

facility

interface.

IFI

call.

An

invocation

of

the

instrumentation

facility

interface

(IFI)

by

means

of

one

of

its

defined

functions.

IFP.

IMS

Fast

Path.

image

copy.

An

exact

reproduction

of

all

or

part

of

a

table

space.

DB2

provides

utility

programs

to

make

full

image

copies

(to

copy

the

entire

table

space)

or

incremental

image

copies

(to

copy

only

those

pages

that

have

been

modified

since

the

last

image

copy).

implied

forget.

In

the

presumed-abort

protocol,

an

implied

response

of

forget

to

the

second-phase

committed

request

from

the

coordinator.

The

response

is

implied

when

the

participant

responds

to

any

subsequent

request

from

the

coordinator.

IMS.

Information

Management

System.

group

name

•

IMS

294

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|

|

|

|

|

IMS

attachment

facility.

A

DB2

subcomponent

that

uses

z/OS

subsystem

interface

(SSI)

protocols

and

cross-memory

linkage

to

process

requests

from

IMS

to

DB2

and

to

coordinate

resource

commitment.

IMS

DB.

Information

Management

System

Database.

IMS

TM.

Information

Management

System

Transaction

Manager.

in-abort.

A

status

of

a

unit

of

recovery.

If

DB2

fails

after

a

unit

of

recovery

begins

to

be

rolled

back,

but

before

the

process

is

completed,

DB2

continues

to

back

out

the

changes

during

restart.

in-commit.

A

status

of

a

unit

of

recovery.

If

DB2

fails

after

beginning

its

phase

2

commit

processing,

it

"knows,"

when

restarted,

that

changes

made

to

data

are

consistent.

Such

units

of

recovery

are

termed

in-commit.

independent.

An

object

(row,

table,

or

table

space)

that

is

neither

a

parent

nor

a

dependent

of

another

object.

index.

A

set

of

pointers

that

are

logically

ordered

by

the

values

of

a

key.

Indexes

can

provide

faster

access

to

data

and

can

enforce

uniqueness

on

the

rows

in

a

table.

index-controlled

partitioning.

A

type

of

partitioning

in

which

partition

boundaries

for

a

partitioned

table

are

controlled

by

values

that

are

specified

on

the

CREATE

INDEX

statement.

Partition

limits

are

saved

in

the

LIMITKEY

column

of

the

SYSIBM.SYSINDEXPART

catalog

table.

index

key.

The

set

of

columns

in

a

table

that

is

used

to

determine

the

order

of

index

entries.

index

partition.

A

VSAM

data

set

that

is

contained

within

a

partitioning

index

space.

index

space.

A

page

set

that

is

used

to

store

the

entries

of

one

index.

indicator

column.

A

4-byte

value

that

is

stored

in

a

base

table

in

place

of

a

LOB

column.

indicator

variable.

A

variable

that

is

used

to

represent

the

null

value

in

an

application

program.

If

the

value

for

the

selected

column

is

null,

a

negative

value

is

placed

in

the

indicator

variable.

indoubt.

A

status

of

a

unit

of

recovery.

If

DB2

fails

after

it

has

finished

its

phase

1

commit

processing

and

before

it

has

started

phase

2,

only

the

commit

coordinator

knows

if

an

individual

unit

of

recovery

is

to

be

committed

or

rolled

back.

At

emergency

restart,

if

DB2

lacks

the

information

it

needs

to

make

this

decision,

the

status

of

the

unit

of

recovery

is

indoubt

until

DB2

obtains

this

information

from

the

coordinator.

More

than

one

unit

of

recovery

can

be

indoubt

at

restart.

indoubt

resolution.

The

process

of

resolving

the

status

of

an

indoubt

logical

unit

of

work

to

either

the

committed

or

the

rollback

state.

inflight.

A

status

of

a

unit

of

recovery.

If

DB2

fails

before

its

unit

of

recovery

completes

phase

1

of

the

commit

process,

it

merely

backs

out

the

updates

of

its

unit

of

recovery

at

restart.

These

units

of

recovery

are

termed

inflight.

inheritance.

The

passing

downstream

of

class

resources

or

attributes

from

a

parent

class

in

the

class

hierarchy

to

a

child

class.

initialization

file.

For

DB2

ODBC

applications,

a

file

containing

values

that

can

be

set

to

adjust

the

performance

of

the

database

manager.

inline

copy.

A

copy

that

is

produced

by

the

LOAD

or

REORG

utility.

The

data

set

that

the

inline

copy

produces

is

logically

equivalent

to

a

full

image

copy

that

is

produced

by

running

the

COPY

utility

with

read-only

access

(SHRLEVEL

REFERENCE).

inner

join.

The

result

of

a

join

operation

that

includes

only

the

matched

rows

of

both

tables

that

are

being

joined.

See

also

join.

inoperative

package.

A

package

that

cannot

be

used

because

one

or

more

user-defined

functions

or

procedures

that

the

package

depends

on

were

dropped.

Such

a

package

must

be

explicitly

rebound.

Contrast

with

invalid

package.

insensitive

cursor.

A

cursor

that

is

not

sensitive

to

inserts,

updates,

or

deletes

that

are

made

to

the

underlying

rows

of

a

result

table

after

the

result

table

has

been

materialized.

insert

trigger.

A

trigger

that

is

defined

with

the

triggering

SQL

operation

INSERT.

install.

The

process

of

preparing

a

DB2

subsystem

to

operate

as

a

z/OS

subsystem.

installation

verification

scenario.

A

sequence

of

operations

that

exercises

the

main

DB2

functions

and

tests

whether

DB2

was

correctly

installed.

instrumentation

facility

component

identifier

(IFCID).

A

value

that

names

and

identifies

a

trace

record

of

an

event

that

can

be

traced.

As

a

parameter

on

the

START

TRACE

and

MODIFY

TRACE

commands,

it

specifies

that

the

corresponding

event

is

to

be

traced.

instrumentation

facility

interface

(IFI).

A

programming

interface

that

enables

programs

to

obtain

online

trace

data

about

DB2,

to

submit

DB2

commands,

and

to

pass

data

to

DB2.

IMS

attachment

facility

•

instrumentation

facility

interface

(IFI)

Glossary

295

|
|
|
|
|
|

|

|

|

|

Interactive

System

Productivity

Facility

(ISPF).

An

IBM

licensed

program

that

provides

interactive

dialog

services

in

a

z/OS

environment.

inter-DB2

R/W

interest.

A

property

of

data

in

a

table

space,

index,

or

partition

that

has

been

opened

by

more

than

one

member

of

a

data

sharing

group

and

that

has

been

opened

for

writing

by

at

least

one

of

those

members.

intermediate

database

server.

The

target

of

a

request

from

a

local

application

or

a

remote

application

requester

that

is

forwarded

to

another

database

server.

In

the

DB2

environment,

the

remote

request

is

forwarded

transparently

to

another

database

server

if

the

object

that

is

referenced

by

a

three-part

name

does

not

reference

the

local

location.

internationalization.

The

support

for

an

encoding

scheme

that

is

able

to

represent

the

code

points

of

characters

from

many

different

geographies

and

languages.

To

support

all

geographies,

the

Unicode

standard

requires

more

than

1

byte

to

represent

a

single

character.

See

also

Unicode.

internal

resource

lock

manager

(IRLM).

A

z/OS

subsystem

that

DB2

uses

to

control

communication

and

database

locking.

International

Organization

for

Standardization.

An

international

body

charged

with

creating

standards

to

facilitate

the

exchange

of

goods

and

services

as

well

as

cooperation

in

intellectual,

scientific,

technological,

and

economic

activity.

invalid

package.

A

package

that

depends

on

an

object

(other

than

a

user-defined

function)

that

is

dropped.

Such

a

package

is

implicitly

rebound

on

invocation.

Contrast

with

inoperative

package.

invariant

character

set.

(1)

A

character

set,

such

as

the

syntactic

character

set,

whose

code

point

assignments

do

not

change

from

code

page

to

code

page.

(2)

A

minimum

set

of

characters

that

is

available

as

part

of

all

character

sets.

IP

address.

A

4-byte

value

that

uniquely

identifies

a

TCP/IP

host.

IRLM.

Internal

resource

lock

manager.

ISO.

International

Organization

for

Standardization.

isolation

level.

The

degree

to

which

a

unit

of

work

is

isolated

from

the

updating

operations

of

other

units

of

work.

See

also

cursor

stability,

read

stability,

repeatable

read,

and

uncommitted

read.

ISPF.

Interactive

System

Productivity

Facility.

ISPF/PDF.

Interactive

System

Productivity

Facility/Program

Development

Facility.

iterator.

In

SQLJ,

an

object

that

contains

the

result

set

of

a

query.

An

iterator

is

equivalent

to

a

cursor

in

other

host

languages.

iterator

declaration

clause.

In

SQLJ,

a

statement

that

generates

an

iterator

declaration

class.

An

iterator

is

an

object

of

an

iterator

declaration

class.

J

Japanese

Industrial

Standard.

An

encoding

scheme

that

is

used

to

process

Japanese

characters.

JAR.

Java

Archive.

Java

Archive

(JAR).

A

file

format

that

is

used

for

aggregating

many

files

into

a

single

file.

JCL.

Job

control

language.

JDBC.

A

Sun

Microsystems

database

application

programming

interface

(API)

for

Java

that

allows

programs

to

access

database

management

systems

by

using

callable

SQL.

JDBC

does

not

require

the

use

of

an

SQL

preprocessor.

In

addition,

JDBC

provides

an

architecture

that

lets

users

add

modules

called

database

drivers,

which

link

the

application

to

their

choice

of

database

management

systems

at

run

time.

JES.

Job

Entry

Subsystem.

JIS.

Japanese

Industrial

Standard.

job

control

language

(JCL).

A

control

language

that

is

used

to

identify

a

job

to

an

operating

system

and

to

describe

the

job’s

requirements.

Job

Entry

Subsystem

(JES).

An

IBM

licensed

program

that

receives

jobs

into

the

system

and

processes

all

output

data

that

is

produced

by

the

jobs.

join.

A

relational

operation

that

allows

retrieval

of

data

from

two

or

more

tables

based

on

matching

column

values.

See

also

equijoin,

full

outer

join,

inner

join,

left

outer

join,

outer

join,

and

right

outer

join.

K

KB.

Kilobyte

(1024

bytes).

Kerberos.

A

network

authentication

protocol

that

is

designed

to

provide

strong

authentication

for

client/server

applications

by

using

secret-key

cryptography.

Kerberos

ticket.

A

transparent

application

mechanism

that

transmits

the

identity

of

an

initiating

principal

to

its

target.

A

simple

ticket

contains

the

principal’s

identity,

a

session

key,

a

timestamp,

and

other

information,

which

is

sealed

using

the

target’s

secret

key.

Interactive

System

Productivity

Facility

(ISPF)

•

Kerberos

ticket

296

Application

Programming

Guide

and

Reference

for

Java™

|
|
|
|
|

|

|

|

key.

A

column

or

an

ordered

collection

of

columns

that

is

identified

in

the

description

of

a

table,

index,

or

referential

constraint.

The

same

column

can

be

part

of

more

than

one

key.

key-sequenced

data

set

(KSDS).

A

VSAM

file

or

data

set

whose

records

are

loaded

in

key

sequence

and

controlled

by

an

index.

keyword.

In

SQL,

a

name

that

identifies

an

option

that

is

used

in

an

SQL

statement.

KSDS.

Key-sequenced

data

set.

L

labeled

duration.

A

number

that

represents

a

duration

of

years,

months,

days,

hours,

minutes,

seconds,

or

microseconds.

large

object

(LOB).

A

sequence

of

bytes

representing

bit

data,

single-byte

characters,

double-byte

characters,

or

a

mixture

of

single-

and

double-byte

characters.

A

LOB

can

be

up

to

2

GB−1

byte

in

length.

See

also

BLOB,

CLOB,

and

DBCLOB.

last

agent

optimization.

An

optimized

commit

flow

for

either

presumed-nothing

or

presumed-abort

protocols

in

which

the

last

agent,

or

final

participant,

becomes

the

commit

coordinator.

This

flow

saves

at

least

one

message.

latch.

A

DB2

internal

mechanism

for

controlling

concurrent

events

or

the

use

of

system

resources.

LCID.

Log

control

interval

definition.

LDS.

Linear

data

set.

leaf

page.

A

page

that

contains

pairs

of

keys

and

RIDs

and

that

points

to

actual

data.

Contrast

with

nonleaf

page.

left

outer

join.

The

result

of

a

join

operation

that

includes

the

matched

rows

of

both

tables

that

are

being

joined,

and

that

preserves

the

unmatched

rows

of

the

first

table.

See

also

join.

limit

key.

The

highest

value

of

the

index

key

for

a

partition.

linear

data

set

(LDS).

A

VSAM

data

set

that

contains

data

but

no

control

information.

A

linear

data

set

can

be

accessed

as

a

byte-addressable

string

in

virtual

storage.

linkage

editor.

A

computer

program

for

creating

load

modules

from

one

or

more

object

modules

or

load

modules

by

resolving

cross

references

among

the

modules

and,

if

necessary,

adjusting

addresses.

link-edit.

The

action

of

creating

a

loadable

computer

program

using

a

linkage

editor.

list.

A

type

of

object,

which

DB2

utilities

can

process,

that

identifies

multiple

table

spaces,

multiple

index

spaces,

or

both.

A

list

is

defined

with

the

LISTDEF

utility

control

statement.

list

structure.

A

coupling

facility

structure

that

lets

data

be

shared

and

manipulated

as

elements

of

a

queue.

LLE.

Load

list

element.

L-lock.

Logical

lock.

load

list

element.

A

z/OS

control

block

that

controls

the

loading

and

deleting

of

a

particular

load

module

based

on

entry

point

names.

load

module.

A

program

unit

that

is

suitable

for

loading

into

main

storage

for

execution.

The

output

of

a

linkage

editor.

LOB.

Large

object.

LOB

locator.

A

mechanism

that

allows

an

application

program

to

manipulate

a

large

object

value

in

the

database

system.

A

LOB

locator

is

a

fullword

integer

value

that

represents

a

single

LOB

value.

An

application

program

retrieves

a

LOB

locator

into

a

host

variable

and

can

then

apply

SQL

operations

to

the

associated

LOB

value

using

the

locator.

LOB

lock.

A

lock

on

a

LOB

value.

LOB

table

space.

A

table

space

in

an

auxiliary

table

that

contains

all

the

data

for

a

particular

LOB

column

in

the

related

base

table.

local.

A

way

of

referring

to

any

object

that

the

local

DB2

subsystem

maintains.

A

local

table,

for

example,

is

a

table

that

is

maintained

by

the

local

DB2

subsystem.

Contrast

with

remote.

locale.

The

definition

of

a

subset

of

a

user’s

environment

that

combines

a

CCSID

and

characters

that

are

defined

for

a

specific

language

and

country.

local

lock.

A

lock

that

provides

intra-DB2

concurrency

control,

but

not

inter-DB2

concurrency

control;

that

is,

its

scope

is

a

single

DB2.

local

subsystem.

The

unique

relational

DBMS

to

which

the

user

or

application

program

is

directly

connected

(in

the

case

of

DB2,

by

one

of

the

DB2

attachment

facilities).

location.

The

unique

name

of

a

database

server.

An

application

uses

the

location

name

to

access

a

DB2

database

server.

A

database

alias

can

be

used

to

override

the

location

name

when

accessing

a

remote

server.

location

alias.

Another

name

by

which

a

database

server

identifies

itself

in

the

network.

Applications

can

use

this

name

to

access

a

DB2

database

server.

key

•

location

alias

Glossary

297

|

|

|

|

|

|

|

|

|

|

|

lock.

A

means

of

controlling

concurrent

events

or

access

to

data.

DB2

locking

is

performed

by

the

IRLM.

lock

duration.

The

interval

over

which

a

DB2

lock

is

held.

lock

escalation.

The

promotion

of

a

lock

from

a

row,

page,

or

LOB

lock

to

a

table

space

lock

because

the

number

of

page

locks

that

are

concurrently

held

on

a

given

resource

exceeds

a

preset

limit.

locking.

The

process

by

which

the

integrity

of

data

is

ensured.

Locking

prevents

concurrent

users

from

accessing

inconsistent

data.

lock

mode.

A

representation

for

the

type

of

access

that

concurrently

running

programs

can

have

to

a

resource

that

a

DB2

lock

is

holding.

lock

object.

The

resource

that

is

controlled

by

a

DB2

lock.

lock

promotion.

The

process

of

changing

the

size

or

mode

of

a

DB2

lock

to

a

higher,

more

restrictive

level.

lock

size.

The

amount

of

data

that

is

controlled

by

a

DB2

lock

on

table

data;

the

value

can

be

a

row,

a

page,

a

LOB,

a

partition,

a

table,

or

a

table

space.

lock

structure.

A

coupling

facility

data

structure

that

is

composed

of

a

series

of

lock

entries

to

support

shared

and

exclusive

locking

for

logical

resources.

log.

A

collection

of

records

that

describe

the

events

that

occur

during

DB2

execution

and

that

indicate

their

sequence.

The

information

thus

recorded

is

used

for

recovery

in

the

event

of

a

failure

during

DB2

execution.

log

control

interval

definition.

A

suffix

of

the

physical

log

record

that

tells

how

record

segments

are

placed

in

the

physical

control

interval.

logical

claim.

A

claim

on

a

logical

partition

of

a

nonpartitioning

index.

logical

data

modeling.

The

process

of

documenting

the

comprehensive

business

information

requirements

in

an

accurate

and

consistent

format.

Data

modeling

is

the

first

task

of

designing

a

database.

logical

drain.

A

drain

on

a

logical

partition

of

a

nonpartitioning

index.

logical

index

partition.

The

set

of

all

keys

that

reference

the

same

data

partition.

logical

lock

(L-lock).

The

lock

type

that

transactions

use

to

control

intra-

and

inter-DB2

data

concurrency

between

transactions.

Contrast

with

physical

lock

(P-lock).

logically

complete.

A

state

in

which

the

concurrent

copy

process

is

finished

with

the

initialization

of

the

target

objects

that

are

being

copied.

The

target

objects

are

available

for

update.

logical

page

list

(LPL).

A

list

of

pages

that

are

in

error

and

that

cannot

be

referenced

by

applications

until

the

pages

are

recovered.

The

page

is

in

logical

error

because

the

actual

media

(coupling

facility

or

disk)

might

not

contain

any

errors.

Usually

a

connection

to

the

media

has

been

lost.

logical

partition.

A

set

of

key

or

RID

pairs

in

a

nonpartitioning

index

that

are

associated

with

a

particular

partition.

logical

recovery

pending

(LRECP).

The

state

in

which

the

data

and

the

index

keys

that

reference

the

data

are

inconsistent.

logical

unit

(LU).

An

access

point

through

which

an

application

program

accesses

the

SNA

network

in

order

to

communicate

with

another

application

program.

logical

unit

of

work

(LUW).

The

processing

that

a

program

performs

between

synchronization

points.

logical

unit

of

work

identifier

(LUWID).

A

name

that

uniquely

identifies

a

thread

within

a

network.

This

name

consists

of

a

fully-qualified

LU

network

name,

an

LUW

instance

number,

and

an

LUW

sequence

number.

log

initialization.

The

first

phase

of

restart

processing

during

which

DB2

attempts

to

locate

the

current

end

of

the

log.

log

record

header

(LRH).

A

prefix,

in

every

logical

record,

that

contains

control

information.

log

record

sequence

number

(LRSN).

A

unique

identifier

for

a

log

record

that

is

associated

with

a

data

sharing

member.

DB2

uses

the

LRSN

for

recovery

in

the

data

sharing

environment.

log

truncation.

A

process

by

which

an

explicit

starting

RBA

is

established.

This

RBA

is

the

point

at

which

the

next

byte

of

log

data

is

to

be

written.

LPL.

Logical

page

list.

LRECP.

Logical

recovery

pending.

LRH.

Log

record

header.

LRSN.

Log

record

sequence

number.

LU.

Logical

unit.

LU

name.

Logical

unit

name,

which

is

the

name

by

which

VTAM

refers

to

a

node

in

a

network.

Contrast

with

location

name.

LUW.

Logical

unit

of

work.

lock

•

LUW

298

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

LUWID.

Logical

unit

of

work

identifier.

M

mapping

table.

A

table

that

the

REORG

utility

uses

to

map

the

associations

of

the

RIDs

of

data

records

in

the

original

copy

and

in

the

shadow

copy.

This

table

is

created

by

the

user.

mass

delete.

The

deletion

of

all

rows

of

a

table.

master

terminal.

The

IMS

logical

terminal

that

has

complete

control

of

IMS

resources

during

online

operations.

master

terminal

operator

(MTO).

See

master

terminal.

materialize.

(1)

The

process

of

putting

rows

from

a

view

or

nested

table

expression

into

a

work

file

for

additional

processing

by

a

query.

(2)

The

placement

of

a

LOB

value

into

contiguous

storage.

Because

LOB

values

can

be

very

large,

DB2

avoids

materializing

LOB

data

until

doing

so

becomes

absolutely

necessary.

materialized

query

table.

A

table

that

is

used

to

contain

information

that

is

derived

and

can

be

summarized

from

one

or

more

source

tables.

MB.

Megabyte

(1

048

576

bytes).

MBCS.

Multibyte

character

set.

UTF-8

is

an

example

of

an

MBCS.

Characters

in

UTF-8

can

range

from

1

to

4

bytes

in

DB2.

member

name.

The

z/OS

XCF

identifier

for

a

particular

DB2

subsystem

in

a

data

sharing

group.

menu.

A

displayed

list

of

available

functions

for

selection

by

the

operator.

A

menu

is

sometimes

called

a

menu

panel.

metalanguage.

A

language

that

is

used

to

create

other

specialized

languages.

migration.

The

process

of

converting

a

subsystem

with

a

previous

release

of

DB2

to

an

updated

or

current

release.

In

this

process,

you

can

acquire

the

functions

of

the

updated

or

current

release

without

losing

the

data

that

you

created

on

the

previous

release.

mixed

data

string.

A

character

string

that

can

contain

both

single-byte

and

double-byte

characters.

MLPA.

Modified

link

pack

area.

MODEENT.

A

VTAM

macro

instruction

that

associates

a

logon

mode

name

with

a

set

of

parameters

representing

session

protocols.

A

set

of

MODEENT

macro

instructions

defines

a

logon

mode

table.

modeling

database.

A

DB2

database

that

you

create

on

your

workstation

that

you

use

to

model

a

DB2

UDB

for

z/OS

subsystem,

which

can

then

be

evaluated

by

the

Index

Advisor.

mode

name.

A

VTAM

name

for

the

collection

of

physical

and

logical

characteristics

and

attributes

of

a

session.

modify

locks.

An

L-lock

or

P-lock

with

a

MODIFY

attribute.

A

list

of

these

active

locks

is

kept

at

all

times

in

the

coupling

facility

lock

structure.

If

the

requesting

DB2

subsystem

fails,

that

DB2

subsystem’s

modify

locks

are

converted

to

retained

locks.

MPP.

Message

processing

program

(in

IMS).

MTO.

Master

terminal

operator.

multibyte

character

set

(MBCS).

A

character

set

that

represents

single

characters

with

more

than

a

single

byte.

Contrast

with

single-byte

character

set

and

double-byte

character

set.

See

also

Unicode.

multidimensional

analysis.

The

process

of

assessing

and

evaluating

an

enterprise

on

more

than

one

level.

Multiple

Virtual

Storage.

An

element

of

the

z/OS

operating

system.

This

element

is

also

called

the

Base

Control

Program

(BCP).

multisite

update.

Distributed

relational

database

processing

in

which

data

is

updated

in

more

than

one

location

within

a

single

unit

of

work.

multithreading.

Multiple

TCBs

that

are

executing

one

copy

of

DB2

ODBC

code

concurrently

(sharing

a

processor)

or

in

parallel

(on

separate

central

processors).

must-complete.

A

state

during

DB2

processing

in

which

the

entire

operation

must

be

completed

to

maintain

data

integrity.

mutex.

Pthread

mutual

exclusion;

a

lock.

A

Pthread

mutex

variable

is

used

as

a

locking

mechanism

to

allow

serialization

of

critical

sections

of

code

by

temporarily

blocking

the

execution

of

all

but

one

thread.

MVS.

See

Multiple

Virtual

Storage.

N

negotiable

lock.

A

lock

whose

mode

can

be

downgraded,

by

agreement

among

contending

users,

to

be

compatible

to

all.

A

physical

lock

is

an

example

of

a

negotiable

lock.

nested

table

expression.

A

fullselect

in

a

FROM

clause

(surrounded

by

parentheses).

LUWID

•

nested

table

expression

Glossary

299

|
|
|

|
|

|

network

identifier

(NID).

The

network

ID

that

is

assigned

by

IMS

or

CICS,

or

if

the

connection

type

is

RRSAF,

the

RRS

unit

of

recovery

ID

(URID).

NID.

Network

identifier.

nonleaf

page.

A

page

that

contains

keys

and

page

numbers

of

other

pages

in

the

index

(either

leaf

or

nonleaf

pages).

Nonleaf

pages

never

point

to

actual

data.

nonpartitioned

index.

An

index

that

is

not

physically

partitioned.

Both

partitioning

indexes

and

secondary

indexes

can

be

nonpartitioned.

nonscrollable

cursor.

A

cursor

that

can

be

moved

only

in

a

forward

direction.

Nonscrollable

cursors

are

sometimes

called

forward-only

cursors

or

serial

cursors.

normalization.

A

key

step

in

the

task

of

building

a

logical

relational

database

design.

Normalization

helps

you

avoid

redundancies

and

inconsistencies

in

your

data.

An

entity

is

normalized

if

it

meets

a

set

of

constraints

for

a

particular

normal

form

(first

normal

form,

second

normal

form,

and

so

on).

Contrast

with

denormalization.

nondeterministic

function.

A

user-defined

function

whose

result

is

not

solely

dependent

on

the

values

of

the

input

arguments.

That

is,

successive

invocations

with

the

same

argument

values

can

produce

a

different

answer.

this

type

of

function

is

sometimes

called

a

variant

function.

Contrast

this

with

a

deterministic

function

(sometimes

called

a

not-variant

function),

which

always

produces

the

same

result

for

the

same

inputs.

not-variant

function.

See

deterministic

function.

NPSI.

See

nonpartitioned

secondary

index.

NRE.

Network

recovery

element.

NUL.

The

null

character

(’\0’),

which

is

represented

by

the

value

X'00'.

In

C,

this

character

denotes

the

end

of

a

string.

null.

A

special

value

that

indicates

the

absence

of

information.

NULLIF.

A

scalar

function

that

evaluates

two

passed

expressions,

returning

either

NULL

if

the

arguments

are

equal

or

the

value

of

the

first

argument

if

they

are

not.

null-terminated

host

variable.

A

varying-length

host

variable

in

which

the

end

of

the

data

is

indicated

by

a

null

terminator.

null

terminator.

In

C,

the

value

that

indicates

the

end

of

a

string.

For

EBCDIC,

ASCII,

and

Unicode

UTF-8

strings,

the

null

terminator

is

a

single-byte

value

(X'00').

For

Unicode

UCS-2

(wide)

strings,

the

null

terminator

is

a

double-byte

value

(X'0000').

O

OASN

(origin

application

schedule

number).

In

IMS,

a

4-byte

number

that

is

assigned

sequentially

to

each

IMS

schedule

since

the

last

cold

start

of

IMS.

The

OASN

is

used

as

an

identifier

for

a

unit

of

work.

In

an

8-byte

format,

the

first

4

bytes

contain

the

schedule

number

and

the

last

4

bytes

contain

the

number

of

IMS

sync

points

(commit

points)

during

the

current

schedule.

The

OASN

is

part

of

the

NID

for

an

IMS

connection.

ODBC.

Open

Database

Connectivity.

ODBC

driver.

A

dynamically-linked

library

(DLL)

that

implements

ODBC

function

calls

and

interacts

with

a

data

source.

OBID.

Data

object

identifier.

Open

Database

Connectivity

(ODBC).

A

Microsoft®

database

application

programming

interface

(API)

for

C

that

allows

access

to

database

management

systems

by

using

callable

SQL.

ODBC

does

not

require

the

use

of

an

SQL

preprocessor.

In

addition,

ODBC

provides

an

architecture

that

lets

users

add

modules

called

database

drivers,

which

link

the

application

to

their

choice

of

database

management

systems

at

run

time.

This

means

that

applications

no

longer

need

to

be

directly

linked

to

the

modules

of

all

the

database

management

systems

that

are

supported.

ordinary

identifier.

An

uppercase

letter

followed

by

zero

or

more

characters,

each

of

which

is

an

uppercase

letter,

a

digit,

or

the

underscore

character.

An

ordinary

identifier

must

not

be

a

reserved

word.

ordinary

token.

A

numeric

constant,

an

ordinary

identifier,

a

host

identifier,

or

a

keyword.

originating

task.

In

a

parallel

group,

the

primary

agent

that

receives

data

from

other

execution

units

(referred

to

as

parallel

tasks)

that

are

executing

portions

of

the

query

in

parallel.

OS/390.

Operating

System/390®.

OS/390

OpenEdition®

Distributed

Computing

Environment

(OS/390

OE

DCE).

A

set

of

technologies

that

are

provided

by

the

Open

Software

Foundation

to

implement

distributed

computing.

outer

join.

The

result

of

a

join

operation

that

includes

the

matched

rows

of

both

tables

that

are

being

joined

and

preserves

some

or

all

of

the

unmatched

rows

of

the

tables

that

are

being

joined.

See

also

join.

overloaded

function.

A

function

name

for

which

multiple

function

instances

exist.

network

identifier

(NID)

•

overloaded

function

300

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

|

P

package.

An

object

containing

a

set

of

SQL

statements

that

have

been

statically

bound

and

that

is

available

for

processing.

A

package

is

sometimes

also

called

an

application

package.

package

list.

An

ordered

list

of

package

names

that

may

be

used

to

extend

an

application

plan.

package

name.

The

name

of

an

object

that

is

created

by

a

BIND

PACKAGE

or

REBIND

PACKAGE

command.

The

object

is

a

bound

version

of

a

database

request

module

(DBRM).

The

name

consists

of

a

location

name,

a

collection

ID,

a

package

ID,

and

a

version

ID.

page.

A

unit

of

storage

within

a

table

space

(4

KB,

8

KB,

16

KB,

or

32

KB)

or

index

space

(4

KB).

In

a

table

space,

a

page

contains

one

or

more

rows

of

a

table.

In

a

LOB

table

space,

a

LOB

value

can

span

more

than

one

page,

but

no

more

than

one

LOB

value

is

stored

on

a

page.

page

set.

Another

way

to

refer

to

a

table

space

or

index

space.

Each

page

set

consists

of

a

collection

of

VSAM

data

sets.

page

set

recovery

pending

(PSRCP).

A

restrictive

state

of

an

index

space.

In

this

case,

the

entire

page

set

must

be

recovered.

Recovery

of

a

logical

part

is

prohibited.

panel.

A

predefined

display

image

that

defines

the

locations

and

characteristics

of

display

fields

on

a

display

surface

(for

example,

a

menu

panel).

parallel

complex.

A

cluster

of

machines

that

work

together

to

handle

multiple

transactions

and

applications.

parallel

group.

A

set

of

consecutive

operations

that

execute

in

parallel

and

that

have

the

same

number

of

parallel

tasks.

parallel

I/O

processing.

A

form

of

I/O

processing

in

which

DB2

initiates

multiple

concurrent

requests

for

a

single

user

query

and

performs

I/O

processing

concurrently

(in

parallel)

on

multiple

data

partitions.

parallelism

assistant.

In

Sysplex

query

parallelism,

a

DB2

subsystem

that

helps

to

process

parts

of

a

parallel

query

that

originates

on

another

DB2

subsystem

in

the

data

sharing

group.

parallelism

coordinator.

In

Sysplex

query

parallelism,

the

DB2

subsystem

from

which

the

parallel

query

originates.

Parallel

Sysplex.

A

set

of

z/OS

systems

that

communicate

and

cooperate

with

each

other

through

certain

multisystem

hardware

components

and

software

services

to

process

customer

workloads.

parallel

task.

The

execution

unit

that

is

dynamically

created

to

process

a

query

in

parallel.

A

parallel

task

is

implemented

by

a

z/OS

service

request

block.

parameter

marker.

A

question

mark

(?)

that

appears

in

a

statement

string

of

a

dynamic

SQL

statement.

The

question

mark

can

appear

where

a

host

variable

could

appear

if

the

statement

string

were

a

static

SQL

statement.

parameter-name.

An

SQL

identifier

that

designates

a

parameter

in

an

SQL

procedure

or

an

SQL

function.

parent

key.

A

primary

key

or

unique

key

in

the

parent

table

of

a

referential

constraint.

The

values

of

a

parent

key

determine

the

valid

values

of

the

foreign

key

in

the

referential

constraint.

parent

lock.

For

explicit

hierarchical

locking,

a

lock

that

is

held

on

a

resource

that

might

have

child

locks

that

are

lower

in

the

hierarchy.

A

parent

lock

is

usually

the

table

space

lock

or

the

partition

intent

lock.

See

also

child

lock.

parent

row.

A

row

whose

primary

key

value

is

the

foreign

key

value

of

a

dependent

row.

parent

table.

A

table

whose

primary

key

is

referenced

by

the

foreign

key

of

a

dependent

table.

parent

table

space.

A

table

space

that

contains

a

parent

table.

A

table

space

containing

a

dependent

of

that

table

is

a

dependent

table

space.

participant.

An

entity

other

than

the

commit

coordinator

that

takes

part

in

the

commit

process.

The

term

participant

is

synonymous

with

agent

in

SNA.

partition.

A

portion

of

a

page

set.

Each

partition

corresponds

to

a

single,

independently

extendable

data

set.

Partitions

can

be

extended

to

a

maximum

size

of

1,

2,

or

4

GB,

depending

on

the

number

of

partitions

in

the

partitioned

page

set.

All

partitions

of

a

given

page

set

have

the

same

maximum

size.

partitioned

data

set

(PDS).

A

data

set

in

disk

storage

that

is

divided

into

partitions,

which

are

called

members.

Each

partition

can

contain

a

program,

part

of

a

program,

or

data.

The

term

partitioned

data

set

is

synonymous

with

program

library.

partitioned

index.

An

index

that

is

physically

partitioned.

Both

partitioning

indexes

and

secondary

indexes

can

be

partitioned.

partitioned

page

set.

A

partitioned

table

space

or

an

index

space.

Header

pages,

space

map

pages,

data

pages,

and

index

pages

reference

data

only

within

the

scope

of

the

partition.

partitioned

table

space.

A

table

space

that

is

subdivided

into

parts

(based

on

index

key

range),

each

of

which

can

be

processed

independently

by

utilities.

package

•

partitioned

table

space

Glossary

301

|

|

|

|

|

|

|

|

|

|

partitioning

index.

An

index

in

which

the

leftmost

columns

are

the

partitioning

columns

of

the

table.

The

index

can

be

partitioned

or

nonpartitioned.

partition

pruning.

The

removal

from

consideration

of

inapplicable

partitions

through

setting

up

predicates

in

a

query

on

a

partitioned

table

to

access

only

certain

partitions

to

satisfy

the

query.

partner

logical

unit.

An

access

point

in

the

SNA

network

that

is

connected

to

the

local

DB2

subsystem

by

way

of

a

VTAM

conversation.

path.

See

SQL

path.

PCT.

Program

control

table

(in

CICS).

PDS.

Partitioned

data

set.

piece.

A

data

set

of

a

nonpartitioned

page

set.

physical

claim.

A

claim

on

an

entire

nonpartitioning

index.

physical

consistency.

The

state

of

a

page

that

is

not

in

a

partially

changed

state.

physical

drain.

A

drain

on

an

entire

nonpartitioning

index.

physical

lock

(P-lock).

A

type

of

lock

that

DB2

acquires

to

provide

consistency

of

data

that

is

cached

in

different

DB2

subsystems.

Physical

locks

are

used

only

in

data

sharing

environments.

Contrast

with

logical

lock

(L-lock).

physical

lock

contention.

Conflicting

states

of

the

requesters

for

a

physical

lock.

See

also

negotiable

lock.

physically

complete.

The

state

in

which

the

concurrent

copy

process

is

completed

and

the

output

data

set

has

been

created.

plan.

See

application

plan.

plan

allocation.

The

process

of

allocating

DB2

resources

to

a

plan

in

preparation

for

execution.

plan

member.

The

bound

copy

of

a

DBRM

that

is

identified

in

the

member

clause.

plan

name.

The

name

of

an

application

plan.

plan

segmentation.

The

dividing

of

each

plan

into

sections.

When

a

section

is

needed,

it

is

independently

brought

into

the

EDM

pool.

P-lock.

Physical

lock.

PLT.

Program

list

table

(in

CICS).

point

of

consistency.

A

time

when

all

recoverable

data

that

an

application

accesses

is

consistent

with

other

data.

The

term

point

of

consistency

is

synonymous

with

sync

point

or

commit

point.

policy.

See

CFRM

policy.

Portable

Operating

System

Interface

(POSIX).

The

IEEE

operating

system

interface

standard,

which

defines

the

Pthread

standard

of

threading.

See

also

Pthread.

POSIX.

Portable

Operating

System

Interface.

postponed

abort

UR.

A

unit

of

recovery

that

was

inflight

or

in-abort,

was

interrupted

by

system

failure

or

cancellation,

and

did

not

complete

backout

during

restart.

PPT.

(1)

Processing

program

table

(in

CICS).

(2)

Program

properties

table

(in

z/OS).

precision.

In

SQL,

the

total

number

of

digits

in

a

decimal

number

(called

the

size

in

the

C

language).

In

the

C

language,

the

number

of

digits

to

the

right

of

the

decimal

point

(called

the

scale

in

SQL).

The

DB2

library

uses

the

SQL

terms.

precompilation.

A

processing

of

application

programs

containing

SQL

statements

that

takes

place

before

compilation.

SQL

statements

are

replaced

with

statements

that

are

recognized

by

the

host

language

compiler.

Output

from

this

precompilation

includes

source

code

that

can

be

submitted

to

the

compiler

and

the

database

request

module

(DBRM)

that

is

input

to

the

bind

process.

predicate.

An

element

of

a

search

condition

that

expresses

or

implies

a

comparison

operation.

prefix.

A

code

at

the

beginning

of

a

message

or

record.

preformat.

The

process

of

preparing

a

VSAM

ESDS

for

DB2

use,

by

writing

specific

data

patterns.

prepare.

The

first

phase

of

a

two-phase

commit

process

in

which

all

participants

are

requested

to

prepare

for

commit.

prepared

SQL

statement.

A

named

object

that

is

the

executable

form

of

an

SQL

statement

that

has

been

processed

by

the

PREPARE

statement.

presumed-abort.

An

optimization

of

the

presumed-nothing

two-phase

commit

protocol

that

reduces

the

number

of

recovery

log

records,

the

duration

of

state

maintenance,

and

the

number

of

messages

between

coordinator

and

participant.

The

optimization

also

modifies

the

indoubt

resolution

responsibility.

presumed-nothing.

The

standard

two-phase

commit

protocol

that

defines

coordinator

and

participant

responsibilities,

relative

to

logical

unit

of

work

states,

recovery

logging,

and

indoubt

resolution.

primary

authorization

ID.

The

authorization

ID

that

is

used

to

identify

the

application

process

to

DB2.

partitioning

index

•

primary

authorization

ID

302

Application

Programming

Guide

and

Reference

for

Java™

|
|
|

|
|
|
|

primary

group

buffer

pool.

For

a

duplexed

group

buffer

pool,

the

structure

that

is

used

to

maintain

the

coherency

of

cached

data.

This

structure

is

used

for

page

registration

and

cross-invalidation.

The

z/OS

equivalent

is

old

structure.

Compare

with

secondary

group

buffer

pool.

primary

index.

An

index

that

enforces

the

uniqueness

of

a

primary

key.

primary

key.

In

a

relational

database,

a

unique,

nonnull

key

that

is

part

of

the

definition

of

a

table.

A

table

cannot

be

defined

as

a

parent

unless

it

has

a

unique

key

or

primary

key.

principal.

An

entity

that

can

communicate

securely

with

another

entity.

In

Kerberos,

principals

are

represented

as

entries

in

the

Kerberos

registry

database

and

include

users,

servers,

computers,

and

others.

principal

name.

The

name

by

which

a

principal

is

known

to

the

DCE

security

services.

private

connection.

A

communications

connection

that

is

specific

to

DB2.

private

protocol

access.

A

method

of

accessing

distributed

data

by

which

you

can

direct

a

query

to

another

DB2

system.

Contrast

with

DRDA

access.

private

protocol

connection.

A

DB2

private

connection

of

the

application

process.

See

also

private

connection.

privilege.

The

capability

of

performing

a

specific

function,

sometimes

on

a

specific

object.

The

types

of

privileges

are:

explicit

privileges,

which

have

names

and

are

held

as

the

result

of

SQL

GRANT

and

REVOKE

statements.

For

example,

the

SELECT

privilege.

implicit

privileges,

which

accompany

the

ownership

of

an

object,

such

as

the

privilege

to

drop

a

synonym

that

one

owns,

or

the

holding

of

an

authority,

such

as

the

privilege

of

SYSADM

authority

to

terminate

any

utility

job.

privilege

set.

For

the

installation

SYSADM

ID,

the

set

of

all

possible

privileges.

For

any

other

authorization

ID,

the

set

of

all

privileges

that

are

recorded

for

that

ID

in

the

DB2

catalog.

process.

In

DB2,

the

unit

to

which

DB2

allocates

resources

and

locks.

Sometimes

called

an

application

process,

a

process

involves

the

execution

of

one

or

more

programs.

The

execution

of

an

SQL

statement

is

always

associated

with

some

process.

The

means

of

initiating

and

terminating

a

process

are

dependent

on

the

environment.

program.

A

single,

compilable

collection

of

executable

statements

in

a

programming

language.

program

temporary

fix

(PTF).

A

solution

or

bypass

of

a

problem

that

is

diagnosed

as

a

result

of

a

defect

in

a

current

unaltered

release

of

a

licensed

program.

An

authorized

program

analysis

report

(APAR)

fix

is

corrective

service

for

an

existing

problem.

A

PTF

is

preventive

service

for

problems

that

might

be

encountered

by

other

users

of

the

product.

A

PTF

is

temporary,

because

a

permanent

fix

is

usually

not

incorporated

into

the

product

until

its

next

release.

protected

conversation.

A

VTAM

conversation

that

supports

two-phase

commit

flows.

PSRCP.

Page

set

recovery

pending.

PTF.

Program

temporary

fix.

Pthread.

The

POSIX

threading

standard

model

for

splitting

an

application

into

subtasks.

The

Pthread

standard

includes

functions

for

creating

threads,

terminating

threads,

synchronizing

threads

through

locking,

and

other

thread

control

facilities.

Q

QMF™.

Query

Management

Facility.

QSAM.

Queued

sequential

access

method.

query.

A

component

of

certain

SQL

statements

that

specifies

a

result

table.

query

block.

The

part

of

a

query

that

is

represented

by

one

of

the

FROM

clauses.

Each

FROM

clause

can

have

multiple

query

blocks,

depending

on

DB2’s

internal

processing

of

the

query.

query

CP

parallelism.

Parallel

execution

of

a

single

query,

which

is

accomplished

by

using

multiple

tasks.

See

also

Sysplex

query

parallelism.

query

I/O

parallelism.

Parallel

access

of

data,

which

is

accomplished

by

triggering

multiple

I/O

requests

within

a

single

query.

queued

sequential

access

method

(QSAM).

An

extended

version

of

the

basic

sequential

access

method

(BSAM).

When

this

method

is

used,

a

queue

of

data

blocks

is

formed.

Input

data

blocks

await

processing,

and

output

data

blocks

await

transfer

to

auxiliary

storage

or

to

an

output

device.

quiesce

point.

A

point

at

which

data

is

consistent

as

a

result

of

running

the

DB2

QUIESCE

utility.

quiesced

member

state.

A

state

of

a

member

of

a

data

sharing

group.

An

active

member

becomes

quiesced

when

a

STOP

DB2

command

takes

effect

without

a

failure.

If

the

member’s

task,

address

space,

or

z/OS

system

fails

before

the

command

takes

effect,

the

member

state

is

failed.

primary

group

buffer

pool

•

quiesced

member

state

Glossary

303

R

RACF.

Resource

Access

Control

Facility,

which

is

a

component

of

the

z/OS

Security

Server.

RAMAC®.

IBM

family

of

enterprise

disk

storage

system

products.

RBA.

Relative

byte

address.

RCT.

Resource

control

table

(in

CICS

attachment

facility).

RDB.

Relational

database.

RDBMS.

Relational

database

management

system.

RDBNAM.

Relational

database

name.

RDF.

Record

definition

field.

read

stability

(RS).

An

isolation

level

that

is

similar

to

repeatable

read

but

does

not

completely

isolate

an

application

process

from

all

other

concurrently

executing

application

processes.

Under

level

RS,

an

application

that

issues

the

same

query

more

than

once

might

read

additional

rows

that

were

inserted

and

committed

by

a

concurrently

executing

application

process.

rebind.

The

creation

of

a

new

application

plan

for

an

application

program

that

has

been

bound

previously.

If,

for

example,

you

have

added

an

index

for

a

table

that

your

application

accesses,

you

must

rebind

the

application

in

order

to

take

advantage

of

that

index.

rebuild.

The

process

of

reallocating

a

coupling

facility

structure.

For

the

shared

communications

area

(SCA)

and

lock

structure,

the

structure

is

repopulated;

for

the

group

buffer

pool,

changed

pages

are

usually

cast

out

to

disk,

and

the

new

structure

is

populated

only

with

changed

pages

that

were

not

successfully

cast

out.

RECFM.

Record

format.

record.

The

storage

representation

of

a

row

or

other

data.

record

identifier

(RID).

A

unique

identifier

that

DB2

uses

internally

to

identify

a

row

of

data

in

a

table.

Compare

with

row

ID.

record

identifier

(RID)

pool.

An

area

of

main

storage

that

is

used

for

sorting

record

identifiers

during

list-prefetch

processing.

record

length.

The

sum

of

the

length

of

all

the

columns

in

a

table,

which

is

the

length

of

the

data

as

it

is

physically

stored

in

the

database.

Records

can

be

fixed

length

or

varying

length,

depending

on

how

the

columns

are

defined.

If

all

columns

are

fixed-length

columns,

the

record

is

a

fixed-length

record.

If

one

or

more

columns

are

varying-length

columns,

the

record

is

a

varying-length

column.

Recoverable

Resource

Manager

Services

attachment

facility

(RRSAF).

A

DB2

subcomponent

that

uses

Resource

Recovery

Services

to

coordinate

resource

commitment

between

DB2

and

all

other

resource

managers

that

also

use

RRS

in

a

z/OS

system.

recovery.

The

process

of

rebuilding

databases

after

a

system

failure.

recovery

log.

A

collection

of

records

that

describes

the

events

that

occur

during

DB2

execution

and

indicates

their

sequence.

The

recorded

information

is

used

for

recovery

in

the

event

of

a

failure

during

DB2

execution.

recovery

manager.

(1)

A

subcomponent

that

supplies

coordination

services

that

control

the

interaction

of

DB2

resource

managers

during

commit,

abort,

checkpoint,

and

restart

processes.

The

recovery

manager

also

supports

the

recovery

mechanisms

of

other

subsystems

(for

example,

IMS)

by

acting

as

a

participant

in

the

other

subsystem’s

process

for

protecting

data

that

has

reached

a

point

of

consistency.

(2)

A

coordinator

or

a

participant

(or

both),

in

the

execution

of

a

two-phase

commit,

that

can

access

a

recovery

log

that

maintains

the

state

of

the

logical

unit

of

work

and

names

the

immediate

upstream

coordinator

and

downstream

participants.

recovery

pending

(RECP).

A

condition

that

prevents

SQL

access

to

a

table

space

that

needs

to

be

recovered.

recovery

token.

An

identifier

for

an

element

that

is

used

in

recovery

(for

example,

NID

or

URID).

RECP.

Recovery

pending.

redo.

A

state

of

a

unit

of

recovery

that

indicates

that

changes

are

to

be

reapplied

to

the

disk

media

to

ensure

data

integrity.

reentrant.

Executable

code

that

can

reside

in

storage

as

one

shared

copy

for

all

threads.

Reentrant

code

is

not

self-modifying

and

provides

separate

storage

areas

for

each

thread.

Reentrancy

is

a

compiler

and

operating

system

concept,

and

reentrancy

alone

is

not

enough

to

guarantee

logically

consistent

results

when

multithreading.

See

also

threadsafe.

referential

constraint.

The

requirement

that

nonnull

values

of

a

designated

foreign

key

are

valid

only

if

they

equal

values

of

the

primary

key

of

a

designated

table.

referential

integrity.

The

state

of

a

database

in

which

all

values

of

all

foreign

keys

are

valid.

Maintaining

referential

integrity

requires

the

enforcement

of

referential

constraints

on

all

operations

that

change

the

data

in

a

table

on

which

the

referential

constraints

are

defined.

RACF

•

referential

integrity

304

Application

Programming

Guide

and

Reference

for

Java™

|
|

|
|
|

referential

structure.

A

set

of

tables

and

relationships

that

includes

at

least

one

table

and,

for

every

table

in

the

set,

all

the

relationships

in

which

that

table

participates

and

all

the

tables

to

which

it

is

related.

refresh

age.

The

time

duration

between

the

current

time

and

the

time

during

which

a

materialized

query

table

was

last

refreshed.

registry.

See

registry

database.

registry

database.

A

database

of

security

information

about

principals,

groups,

organizations,

accounts,

and

security

policies.

relational

database

(RDB).

A

database

that

can

be

perceived

as

a

set

of

tables

and

manipulated

in

accordance

with

the

relational

model

of

data.

relational

database

management

system

(RDBMS).

A

collection

of

hardware

and

software

that

organizes

and

provides

access

to

a

relational

database.

relational

database

name

(RDBNAM).

A

unique

identifier

for

an

RDBMS

within

a

network.

In

DB2,

this

must

be

the

value

in

the

LOCATION

column

of

table

SYSIBM.LOCATIONS

in

the

CDB.

DB2

publications

refer

to

the

name

of

another

RDBMS

as

a

LOCATION

value

or

a

location

name.

relationship.

A

defined

connection

between

the

rows

of

a

table

or

the

rows

of

two

tables.

A

relationship

is

the

internal

representation

of

a

referential

constraint.

relative

byte

address

(RBA).

The

offset

of

a

data

record

or

control

interval

from

the

beginning

of

the

storage

space

that

is

allocated

to

the

data

set

or

file

to

which

it

belongs.

remigration.

The

process

of

returning

to

a

current

release

of

DB2

following

a

fallback

to

a

previous

release.

This

procedure

constitutes

another

migration

process.

remote.

Any

object

that

is

maintained

by

a

remote

DB2

subsystem

(that

is,

by

a

DB2

subsystem

other

than

the

local

one).

A

remote

view,

for

example,

is

a

view

that

is

maintained

by

a

remote

DB2

subsystem.

Contrast

with

local.

remote

attach

request.

A

request

by

a

remote

location

to

attach

to

the

local

DB2

subsystem.

Specifically,

the

request

that

is

sent

is

an

SNA

Function

Management

Header

5.

remote

subsystem.

Any

relational

DBMS,

except

the

local

subsystem,

with

which

the

user

or

application

can

communicate.

The

subsystem

need

not

be

remote

in

any

physical

sense,

and

might

even

operate

on

the

same

processor

under

the

same

z/OS

system.

reoptimization.

The

DB2

process

of

reconsidering

the

access

path

of

an

SQL

statement

at

run

time;

during

reoptimization,

DB2

uses

the

values

of

host

variables,

parameter

markers,

or

special

registers.

REORG

pending

(REORP).

A

condition

that

restricts

SQL

access

and

most

utility

access

to

an

object

that

must

be

reorganized.

REORP.

REORG

pending.

repeatable

read

(RR).

The

isolation

level

that

provides

maximum

protection

from

other

executing

application

programs.

When

an

application

program

executes

with

repeatable

read

protection,

rows

that

the

program

references

cannot

be

changed

by

other

programs

until

the

program

reaches

a

commit

point.

repeating

group.

A

situation

in

which

an

entity

includes

multiple

attributes

that

are

inherently

the

same.

The

presence

of

a

repeating

group

violates

the

requirement

of

first

normal

form.

In

an

entity

that

satisfies

the

requirement

of

first

normal

form,

each

attribute

is

independent

and

unique

in

its

meaning

and

its

name.

See

also

normalization.

replay

detection

mechanism.

A

method

that

allows

a

principal

to

detect

whether

a

request

is

a

valid

request

from

a

source

that

can

be

trusted

or

whether

an

untrustworthy

entity

has

captured

information

from

a

previous

exchange

and

is

replaying

the

information

exchange

to

gain

access

to

the

principal.

request

commit.

The

vote

that

is

submitted

to

the

prepare

phase

if

the

participant

has

modified

data

and

is

prepared

to

commit

or

roll

back.

requester.

The

source

of

a

request

to

access

data

at

a

remote

server.

In

the

DB2

environment,

the

requester

function

is

provided

by

the

distributed

data

facility.

resource.

The

object

of

a

lock

or

claim,

which

could

be

a

table

space,

an

index

space,

a

data

partition,

an

index

partition,

or

a

logical

partition.

resource

allocation.

The

part

of

plan

allocation

that

deals

specifically

with

the

database

resources.

resource

control

table

(RCT).

A

construct

of

the

CICS

attachment

facility,

created

by

site-provided

macro

parameters,

that

defines

authorization

and

access

attributes

for

transactions

or

transaction

groups.

resource

definition

online.

A

CICS

feature

that

you

use

to

define

CICS

resources

online

without

assembling

tables.

resource

limit

facility

(RLF).

A

portion

of

DB2

code

that

prevents

dynamic

manipulative

SQL

statements

from

exceeding

specified

time

limits.

The

resource

limit

facility

is

sometimes

called

the

governor.

resource

limit

specification

table

(RLST).

A

site-defined

table

that

specifies

the

limits

to

be

enforced

by

the

resource

limit

facility.

referential

structure

•

resource

limit

specification

table

(RLST)

Glossary

305

|
|
|

resource

manager.

(1)

A

function

that

is

responsible

for

managing

a

particular

resource

and

that

guarantees

the

consistency

of

all

updates

made

to

recoverable

resources

within

a

logical

unit

of

work.

The

resource

that

is

being

managed

can

be

physical

(for

example,

disk

or

main

storage)

or

logical

(for

example,

a

particular

type

of

system

service).

(2)

A

participant,

in

the

execution

of

a

two-phase

commit,

that

has

recoverable

resources

that

could

have

been

modified.

The

resource

manager

has

access

to

a

recovery

log

so

that

it

can

commit

or

roll

back

the

effects

of

the

logical

unit

of

work

to

the

recoverable

resources.

restart

pending

(RESTP).

A

restrictive

state

of

a

page

set

or

partition

that

indicates

that

restart

(backout)

work

needs

to

be

performed

on

the

object.

All

access

to

the

page

set

or

partition

is

denied

except

for

access

by

the:

v

RECOVER

POSTPONED

command

v

Automatic

online

backout

(which

DB2

invokes

after

restart

if

the

system

parameter

LBACKOUT=AUTO)

RESTP.

Restart

pending.

result

set.

The

set

of

rows

that

a

stored

procedure

returns

to

a

client

application.

result

set

locator.

A

4-byte

value

that

DB2

uses

to

uniquely

identify

a

query

result

set

that

a

stored

procedure

returns.

result

table.

The

set

of

rows

that

are

specified

by

a

SELECT

statement.

retained

lock.

A

MODIFY

lock

that

a

DB2

subsystem

was

holding

at

the

time

of

a

subsystem

failure.

The

lock

is

retained

in

the

coupling

facility

lock

structure

across

a

DB2

failure.

RID.

Record

identifier.

RID

pool.

Record

identifier

pool.

right

outer

join.

The

result

of

a

join

operation

that

includes

the

matched

rows

of

both

tables

that

are

being

joined

and

preserves

the

unmatched

rows

of

the

second

join

operand.

See

also

join.

RLF.

Resource

limit

facility.

RLST.

Resource

limit

specification

table.

RMID.

Resource

manager

identifier.

RO.

Read-only

access.

rollback.

The

process

of

restoring

data

that

was

changed

by

SQL

statements

to

the

state

at

its

last

commit

point.

All

locks

are

freed.

Contrast

with

commit.

root

page.

The

index

page

that

is

at

the

highest

level

(or

the

beginning

point)

in

an

index.

routine.

A

term

that

refers

to

either

a

user-defined

function

or

a

stored

procedure.

row.

The

horizontal

component

of

a

table.

A

row

consists

of

a

sequence

of

values,

one

for

each

column

of

the

table.

ROWID.

Row

identifier.

row

identifier

(ROWID).

A

value

that

uniquely

identifies

a

row.

This

value

is

stored

with

the

row

and

never

changes.

row

lock.

A

lock

on

a

single

row

of

data.

rowset.

A

set

of

rows

for

which

a

cursor

position

is

established.

rowset

cursor.

A

cursor

that

is

defined

so

that

one

or

more

rows

can

be

returned

as

a

rowset

for

a

single

FETCH

statement,

and

the

cursor

is

positioned

on

the

set

of

rows

that

is

fetched.

rowset-positioned

access.

The

ability

to

retrieve

multiple

rows

from

a

single

FETCH

statement.

row-positioned

access.

The

ability

to

retrieve

a

single

row

from

a

single

FETCH

statement.

row

trigger.

A

trigger

that

is

defined

with

the

trigger

granularity

FOR

EACH

ROW.

RRE.

Residual

recovery

entry

(in

IMS).

RRSAF.

Recoverable

Resource

Manager

Services

attachment

facility.

RS.

Read

stability.

RTT.

Resource

translation

table.

RURE.

Restart

URE.

S

savepoint.

A

named

entity

that

represents

the

state

of

data

and

schemas

at

a

particular

point

in

time

within

a

unit

of

work.

SQL

statements

exist

to

set

a

savepoint,

release

a

savepoint,

and

restore

data

and

schemas

to

the

state

that

the

savepoint

represents.

The

restoration

of

data

and

schemas

to

a

savepoint

is

usually

referred

to

as

rolling

back

to

a

savepoint.

SBCS.

Single-byte

character

set.

SCA.

Shared

communications

area.

scalar

function.

An

SQL

operation

that

produces

a

single

value

from

another

value

and

is

expressed

as

a

function

name,

followed

by

a

list

of

arguments

that

are

enclosed

in

parentheses.

Contrast

with

column

function.

scale.

In

SQL,

the

number

of

digits

to

the

right

of

the

decimal

point

(called

the

precision

in

the

C

language).

The

DB2

library

uses

the

SQL

definition.

resource

manager

•

scale

306

Application

Programming

Guide

and

Reference

for

Java™

|

|

|

|

|

|

|

|

|

|

schema.

(1)

The

organization

or

structure

of

a

database.

(2)

A

logical

grouping

for

user-defined

functions,

distinct

types,

triggers,

and

stored

procedures.

When

an

object

of

one

of

these

types

is

created,

it

is

assigned

to

one

schema,

which

is

determined

by

the

name

of

the

object.

For

example,

the

following

statement

creates

a

distinct

type

T

in

schema

C:

CREATE

DISTINCT

TYPE

C.T

...

scrollability.

The

ability

to

use

a

cursor

to

fetch

in

either

a

forward

or

backward

direction.

The

FETCH

statement

supports

multiple

fetch

orientations

to

indicate

the

new

position

of

the

cursor.

See

also

fetch

orientation.

scrollable

cursor.

A

cursor

that

can

be

moved

in

both

a

forward

and

a

backward

direction.

SDWA.

System

diagnostic

work

area.

search

condition.

A

criterion

for

selecting

rows

from

a

table.

A

search

condition

consists

of

one

or

more

predicates.

secondary

authorization

ID.

An

authorization

ID

that

has

been

associated

with

a

primary

authorization

ID

by

an

authorization

exit

routine.

secondary

group

buffer

pool.

For

a

duplexed

group

buffer

pool,

the

structure

that

is

used

to

back

up

changed

pages

that

are

written

to

the

primary

group

buffer

pool.

No

page

registration

or

cross-invalidation

occurs

using

the

secondary

group

buffer

pool.

The

z/OS

equivalent

is

new

structure.

secondary

index.

A

nonpartitioning

index

on

a

partitioned

table.

section.

The

segment

of

a

plan

or

package

that

contains

the

executable

structures

for

a

single

SQL

statement.

For

most

SQL

statements,

one

section

in

the

plan

exists

for

each

SQL

statement

in

the

source

program.

However,

for

cursor-related

statements,

the

DECLARE,

OPEN,

FETCH,

and

CLOSE

statements

reference

the

same

section

because

they

each

refer

to

the

SELECT

statement

that

is

named

in

the

DECLARE

CURSOR

statement.

SQL

statements

such

as

COMMIT,

ROLLBACK,

and

some

SET

statements

do

not

use

a

section.

segment.

A

group

of

pages

that

holds

rows

of

a

single

table.

See

also

segmented

table

space.

segmented

table

space.

A

table

space

that

is

divided

into

equal-sized

groups

of

pages

called

segments.

Segments

are

assigned

to

tables

so

that

rows

of

different

tables

are

never

stored

in

the

same

segment.

self-referencing

constraint.

A

referential

constraint

that

defines

a

relationship

in

which

a

table

is

a

dependent

of

itself.

self-referencing

table.

A

table

with

a

self-referencing

constraint.

sensitive

cursor.

A

cursor

that

is

sensitive

to

changes

that

are

made

to

the

database

after

the

result

table

has

been

materialized.

sequence.

A

user-defined

object

that

generates

a

sequence

of

numeric

values

according

to

user

specifications.

sequential

data

set.

A

non-DB2

data

set

whose

records

are

organized

on

the

basis

of

their

successive

physical

positions,

such

as

on

magnetic

tape.

Several

of

the

DB2

database

utilities

require

sequential

data

sets.

sequential

prefetch.

A

mechanism

that

triggers

consecutive

asynchronous

I/O

operations.

Pages

are

fetched

before

they

are

required,

and

several

pages

are

read

with

a

single

I/O

operation.

serial

cursor.

A

cursor

that

can

be

moved

only

in

a

forward

direction.

serialized

profile.

A

Java

object

that

contains

SQL

statements

and

descriptions

of

host

variables.

The

SQLJ

translator

produces

a

serialized

profile

for

each

connection

context.

server.

The

target

of

a

request

from

a

remote

requester.

In

the

DB2

environment,

the

server

function

is

provided

by

the

distributed

data

facility,

which

is

used

to

access

DB2

data

from

remote

applications.

server-side

programming.

A

method

for

adding

DB2

data

into

dynamic

Web

pages.

service

class.

An

eight-character

identifier

that

is

used

by

the

z/OS

Workload

Manager

to

associate

user

performance

goals

with

a

particular

DDF

thread

or

stored

procedure.

A

service

class

is

also

used

to

classify

work

on

parallelism

assistants.

service

request

block.

A

unit

of

work

that

is

scheduled

to

execute

in

another

address

space.

session.

A

link

between

two

nodes

in

a

VTAM

network.

session

protocols.

The

available

set

of

SNA

communication

requests

and

responses.

shared

communications

area

(SCA).

A

coupling

facility

list

structure

that

a

DB2

data

sharing

group

uses

for

inter-DB2

communication.

share

lock.

A

lock

that

prevents

concurrently

executing

application

processes

from

changing

data,

but

not

from

reading

data.

Contrast

with

exclusive

lock.

shift-in

character.

A

special

control

character

(X'0F')

that

is

used

in

EBCDIC

systems

to

denote

that

the

subsequent

bytes

represent

SBCS

characters.

See

also

shift-out

character.

schema

•

shift-in

character

Glossary

307

|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

shift-out

character.

A

special

control

character

(X'0E')

that

is

used

in

EBCDIC

systems

to

denote

that

the

subsequent

bytes,

up

to

the

next

shift-in

control

character,

represent

DBCS

characters.

See

also

shift-in

character.

sign-on.

A

request

that

is

made

on

behalf

of

an

individual

CICS

or

IMS

application

process

by

an

attachment

facility

to

enable

DB2

to

verify

that

it

is

authorized

to

use

DB2

resources.

simple

page

set.

A

nonpartitioned

page

set.

A

simple

page

set

initially

consists

of

a

single

data

set

(page

set

piece).

If

and

when

that

data

set

is

extended

to

2

GB,

another

data

set

is

created,

and

so

on,

up

to

a

total

of

32

data

sets.

DB2

considers

the

data

sets

to

be

a

single

contiguous

linear

address

space

containing

a

maximum

of

64

GB.

Data

is

stored

in

the

next

available

location

within

this

address

space

without

regard

to

any

partitioning

scheme.

simple

table

space.

A

table

space

that

is

neither

partitioned

nor

segmented.

single-byte

character

set

(SBCS).

A

set

of

characters

in

which

each

character

is

represented

by

a

single

byte.

Contrast

with

double-byte

character

set

or

multibyte

character

set.

single-precision

floating

point

number.

A

32-bit

approximate

representation

of

a

real

number.

size.

In

the

C

language,

the

total

number

of

digits

in

a

decimal

number

(called

the

precision

in

SQL).

The

DB2

library

uses

the

SQL

term.

SMF.

System

Management

Facilities.

SMP/E.

System

Modification

Program/Extended.

SMS.

Storage

Management

Subsystem.

SNA.

Systems

Network

Architecture.

SNA

network.

The

part

of

a

network

that

conforms

to

the

formats

and

protocols

of

Systems

Network

Architecture

(SNA).

socket.

A

callable

TCP/IP

programming

interface

that

TCP/IP

network

applications

use

to

communicate

with

remote

TCP/IP

partners.

sourced

function.

A

function

that

is

implemented

by

another

built-in

or

user-defined

function

that

is

already

known

to

the

database

manager.

This

function

can

be

a

scalar

function

or

a

column

(aggregating)

function;

it

returns

a

single

value

from

a

set

of

values

(for

example,

MAX

or

AVG).

Contrast

with

built-in

function,

external

function,

and

SQL

function.

source

program.

A

set

of

host

language

statements

and

SQL

statements

that

is

processed

by

an

SQL

precompiler.

source

table.

A

table

that

can

be

a

base

table,

a

view,

a

table

expression,

or

a

user-defined

table

function.

source

type.

An

existing

type

that

DB2

uses

to

internally

represent

a

distinct

type.

space.

A

sequence

of

one

or

more

blank

characters.

special

register.

A

storage

area

that

DB2

defines

for

an

application

process

to

use

for

storing

information

that

can

be

referenced

in

SQL

statements.

Examples

of

special

registers

are

USER

and

CURRENT

DATE.

specific

function

name.

A

particular

user-defined

function

that

is

known

to

the

database

manager

by

its

specific

name.

Many

specific

user-defined

functions

can

have

the

same

function

name.

When

a

user-defined

function

is

defined

to

the

database,

every

function

is

assigned

a

specific

name

that

is

unique

within

its

schema.

Either

the

user

can

provide

this

name,

or

a

default

name

is

used.

SPUFI.

SQL

Processor

Using

File

Input.

SQL.

Structured

Query

Language.

SQL

authorization

ID

(SQL

ID).

The

authorization

ID

that

is

used

for

checking

dynamic

SQL

statements

in

some

situations.

SQLCA.

SQL

communication

area.

SQL

communication

area

(SQLCA).

A

structure

that

is

used

to

provide

an

application

program

with

information

about

the

execution

of

its

SQL

statements.

SQL

connection.

An

association

between

an

application

process

and

a

local

or

remote

application

server

or

database

server.

SQLDA.

SQL

descriptor

area.

SQL

descriptor

area

(SQLDA).

A

structure

that

describes

input

variables,

output

variables,

or

the

columns

of

a

result

table.

SQL

escape

character.

The

symbol

that

is

used

to

enclose

an

SQL

delimited

identifier.

This

symbol

is

the

double

quotation

mark

(").

See

also

escape

character.

SQL

function.

A

user-defined

function

in

which

the

CREATE

FUNCTION

statement

contains

the

source

code.

The

source

code

is

a

single

SQL

expression

that

evaluates

to

a

single

value.

The

SQL

user-defined

function

can

return

only

one

parameter.

SQL

ID.

SQL

authorization

ID.

SQLJ.

Structured

Query

Language

(SQL)

that

is

embedded

in

the

Java

programming

language.

SQL

path.

An

ordered

list

of

schema

names

that

are

used

in

the

resolution

of

unqualified

references

to

user-defined

functions,

distinct

types,

and

stored

shift-out

character

•

SQL

path

308

Application

Programming

Guide

and

Reference

for

Java™

|

|

procedures.

In

dynamic

SQL,

the

current

path

is

found

in

the

CURRENT

PATH

special

register.

In

static

SQL,

it

is

defined

in

the

PATH

bind

option.

SQL

procedure.

A

user-written

program

that

can

be

invoked

with

the

SQL

CALL

statement.

Contrast

with

external

procedure.

SQL

processing

conversation.

Any

conversation

that

requires

access

of

DB2

data,

either

through

an

application

or

by

dynamic

query

requests.

SQL

Processor

Using

File

Input

(SPUFI).

A

facility

of

the

TSO

attachment

subcomponent

that

enables

the

DB2I

user

to

execute

SQL

statements

without

embedding

them

in

an

application

program.

SQL

return

code.

Either

SQLCODE

or

SQLSTATE.

SQL

routine.

A

user-defined

function

or

stored

procedure

that

is

based

on

code

that

is

written

in

SQL.

SQL

statement

coprocessor.

An

alternative

to

the

DB2

precompiler

that

lets

the

user

process

SQL

statements

at

compile

time.

The

user

invokes

an

SQL

statement

coprocessor

by

specifying

a

compiler

option.

SQL

string

delimiter.

A

symbol

that

is

used

to

enclose

an

SQL

string

constant.

The

SQL

string

delimiter

is

the

apostrophe

('),

except

in

COBOL

applications,

where

the

user

assigns

the

symbol,

which

is

either

an

apostrophe

or

a

double

quotation

mark

(").

SRB.

Service

request

block.

SSI.

Subsystem

interface

(in

z/OS).

SSM.

Subsystem

member

(in

IMS).

stand-alone.

An

attribute

of

a

program

that

means

that

it

is

capable

of

executing

separately

from

DB2,

without

using

DB2

services.

star

join.

A

method

of

joining

a

dimension

column

of

a

fact

table

to

the

key

column

of

the

corresponding

dimension

table.

See

also

join,

dimension,

and

star

schema.

star

schema.

The

combination

of

a

fact

table

(which

contains

most

of

the

data)

and

a

number

of

dimension

tables.

See

also

star

join,

dimension,

and

dimension

table.

statement

handle.

In

DB2

ODBC,

the

data

object

that

contains

information

about

an

SQL

statement

that

is

managed

by

DB2

ODBC.

This

includes

information

such

as

dynamic

arguments,

bindings

for

dynamic

arguments

and

columns,

cursor

information,

result

values,

and

status

information.

Each

statement

handle

is

associated

with

the

connection

handle.

statement

string.

For

a

dynamic

SQL

statement,

the

character

string

form

of

the

statement.

statement

trigger.

A

trigger

that

is

defined

with

the

trigger

granularity

FOR

EACH

STATEMENT.

static

cursor.

A

named

control

structure

that

does

not

change

the

size

of

the

result

table

or

the

order

of

its

rows

after

an

application

opens

the

cursor.

Contrast

with

dynamic

cursor.

static

SQL.

SQL

statements,

embedded

within

a

program,

that

are

prepared

during

the

program

preparation

process

(before

the

program

is

executed).

After

being

prepared,

the

SQL

statement

does

not

change

(although

values

of

host

variables

that

are

specified

by

the

statement

might

change).

storage

group.

A

named

set

of

disks

on

which

DB2

data

can

be

stored.

stored

procedure.

A

user-written

application

program

that

can

be

invoked

through

the

use

of

the

SQL

CALL

statement.

string.

See

character

string

or

graphic

string.

strong

typing.

A

process

that

guarantees

that

only

user-defined

functions

and

operations

that

are

defined

on

a

distinct

type

can

be

applied

to

that

type.

For

example,

you

cannot

directly

compare

two

currency

types,

such

as

Canadian

dollars

and

U.S.

dollars.

But

you

can

provide

a

user-defined

function

to

convert

one

currency

to

the

other

and

then

do

the

comparison.

structure.

(1)

A

name

that

refers

collectively

to

different

types

of

DB2

objects,

such

as

tables,

databases,

views,

indexes,

and

table

spaces.

(2)

A

construct

that

uses

z/OS

to

map

and

manage

storage

on

a

coupling

facility.

See

also

cache

structure,

list

structure,

or

lock

structure.

Structured

Query

Language

(SQL).

A

standardized

language

for

defining

and

manipulating

data

in

a

relational

database.

structure

owner.

In

relation

to

group

buffer

pools,

the

DB2

member

that

is

responsible

for

the

following

activities:

v

Coordinating

rebuild,

checkpoint,

and

damage

assessment

processing

v

Monitoring

the

group

buffer

pool

threshold

and

notifying

castout

owners

when

the

threshold

has

been

reached

subcomponent.

A

group

of

closely

related

DB2

modules

that

work

together

to

provide

a

general

function.

subject

table.

The

table

for

which

a

trigger

is

created.

When

the

defined

triggering

event

occurs

on

this

table,

the

trigger

is

activated.

subpage.

The

unit

into

which

a

physical

index

page

can

be

divided.

SQL

procedure

•

subpage

Glossary

309

|

|

|

|

subquery.

A

SELECT

statement

within

the

WHERE

or

HAVING

clause

of

another

SQL

statement;

a

nested

SQL

statement.

subselect.

That

form

of

a

query

that

does

not

include

an

ORDER

BY

clause,

an

UPDATE

clause,

or

UNION

operators.

substitution

character.

A

unique

character

that

is

substituted

during

character

conversion

for

any

characters

in

the

source

program

that

do

not

have

a

match

in

the

target

coding

representation.

subsystem.

A

distinct

instance

of

a

relational

database

management

system

(RDBMS).

surrogate

pair.

A

coded

representation

for

a

single

character

that

consists

of

a

sequence

of

two

16-bit

code

units,

in

which

the

first

value

of

the

pair

is

a

high-surrogate

code

unit

in

the

range

U+D800

through

U+DBFF,

and

the

second

value

is

a

low-surrogate

code

unit

in

the

range

U+DC00

through

U+DFFF.

Surrogate

pairs

provide

an

extension

mechanism

for

encoding

917

476

characters

without

requiring

the

use

of

32-bit

characters.

SVC

dump.

A

dump

that

is

issued

when

a

z/OS

or

a

DB2

functional

recovery

routine

detects

an

error.

sync

point.

See

commit

point.

syncpoint

tree.

The

tree

of

recovery

managers

and

resource

managers

that

are

involved

in

a

logical

unit

of

work,

starting

with

the

recovery

manager,

that

make

the

final

commit

decision.

synonym.

In

SQL,

an

alternative

name

for

a

table

or

view.

Synonyms

can

be

used

to

refer

only

to

objects

at

the

subsystem

in

which

the

synonym

is

defined.

syntactic

character

set.

A

set

of

81

graphic

characters

that

are

registered

in

the

IBM

registry

as

character

set

00640.

This

set

was

originally

recommended

to

the

programming

language

community

to

be

used

for

syntactic

purposes

toward

maximizing

portability

and

interchangeability

across

systems

and

country

boundaries.

It

is

contained

in

most

of

the

primary

registered

character

sets,

with

a

few

exceptions.

See

also

invariant

character

set.

Sysplex.

See

Parallel

Sysplex.

Sysplex

query

parallelism.

Parallel

execution

of

a

single

query

that

is

accomplished

by

using

multiple

tasks

on

more

than

one

DB2

subsystem.

See

also

query

CP

parallelism.

system

administrator.

The

person

at

a

computer

installation

who

designs,

controls,

and

manages

the

use

of

the

computer

system.

system

agent.

A

work

request

that

DB2

creates

internally

such

as

prefetch

processing,

deferred

writes,

and

service

tasks.

system

conversation.

The

conversation

that

two

DB2

subsystems

must

establish

to

process

system

messages

before

any

distributed

processing

can

begin.

system

diagnostic

work

area

(SDWA).

The

data

that

is

recorded

in

a

SYS1.LOGREC

entry

that

describes

a

program

or

hardware

error.

system-directed

connection.

A

connection

that

a

relational

DBMS

manages

by

processing

SQL

statements

with

three-part

names.

System

Modification

Program/Extended

(SMP/E).

A

z/OS

tool

for

making

software

changes

in

programming

systems

(such

as

DB2)

and

for

controlling

those

changes.

Systems

Network

Architecture

(SNA).

The

description

of

the

logical

structure,

formats,

protocols,

and

operational

sequences

for

transmitting

information

through

and

controlling

the

configuration

and

operation

of

networks.

SYS1.DUMPxx

data

set.

A

data

set

that

contains

a

system

dump

(in

z/OS).

SYS1.LOGREC.

A

service

aid

that

contains

important

information

about

program

and

hardware

errors

(in

z/OS).

T

table.

A

named

data

object

consisting

of

a

specific

number

of

columns

and

some

number

of

unordered

rows.

See

also

base

table

or

temporary

table.

table-controlled

partitioning.

A

type

of

partitioning

in

which

partition

boundaries

for

a

partitioned

table

are

controlled

by

values

that

are

defined

in

the

CREATE

TABLE

statement.

Partition

limits

are

saved

in

the

LIMITKEY_INTERNAL

column

of

the

SYSIBM.SYSTABLEPART

catalog

table.

table

function.

A

function

that

receives

a

set

of

arguments

and

returns

a

table

to

the

SQL

statement

that

references

the

function.

A

table

function

can

be

referenced

only

in

the

FROM

clause

of

a

subselect.

table

locator.

A

mechanism

that

allows

access

to

trigger

transition

tables

in

the

FROM

clause

of

SELECT

statements,

in

the

subselect

of

INSERT

statements,

or

from

within

user-defined

functions.

A

table

locator

is

a

fullword

integer

value

that

represents

a

transition

table.

table

space.

A

page

set

that

is

used

to

store

the

records

in

one

or

more

tables.

subquery

•

table

space

310

Application

Programming

Guide

and

Reference

for

Java™

|

|

|

|

|

|

table

space

set.

A

set

of

table

spaces

and

partitions

that

should

be

recovered

together

for

one

of

these

reasons:

v

Each

of

them

contains

a

table

that

is

a

parent

or

descendent

of

a

table

in

one

of

the

others.

v

The

set

contains

a

base

table

and

associated

auxiliary

tables.

A

table

space

set

can

contain

both

types

of

relationships.

task

control

block

(TCB).

A

z/OS

control

block

that

is

used

to

communicate

information

about

tasks

within

an

address

space

that

are

connected

to

DB2.

See

also

address

space

connection.

TB.

Terabyte

(1

099

511

627

776

bytes).

TCB.

Task

control

block

(in

z/OS).

TCP/IP.

A

network

communication

protocol

that

computer

systems

use

to

exchange

information

across

telecommunication

links.

TCP/IP

port.

A

2-byte

value

that

identifies

an

end

user

or

a

TCP/IP

network

application

within

a

TCP/IP

host.

template.

A

DB2

utilities

output

data

set

descriptor

that

is

used

for

dynamic

allocation.

A

template

is

defined

by

the

TEMPLATE

utility

control

statement.

temporary

table.

A

table

that

holds

temporary

data.

Temporary

tables

are

useful

for

holding

or

sorting

intermediate

results

from

queries

that

contain

a

large

number

of

rows.

The

two

types

of

temporary

table,

which

are

created

by

different

SQL

statements,

are

the

created

temporary

table

and

the

declared

temporary

table.

Contrast

with

result

table.

See

also

created

temporary

table

and

declared

temporary

table.

Terminal

Monitor

Program

(TMP).

A

program

that

provides

an

interface

between

terminal

users

and

command

processors

and

has

access

to

many

system

services

(in

z/OS).

thread.

The

DB2

structure

that

describes

an

application’s

connection,

traces

its

progress,

processes

resource

functions,

and

delimits

its

accessibility

to

DB2

resources

and

services.

Most

DB2

functions

execute

under

a

thread

structure.

See

also

allied

thread

and

database

access

thread.

threadsafe.

A

characteristic

of

code

that

allows

multithreading

both

by

providing

private

storage

areas

for

each

thread,

and

by

properly

serializing

shared

(global)

storage

areas.

three-part

name.

The

full

name

of

a

table,

view,

or

alias.

It

consists

of

a

location

name,

authorization

ID,

and

an

object

name,

separated

by

a

period.

time.

A

three-part

value

that

designates

a

time

of

day

in

hours,

minutes,

and

seconds.

time

duration.

A

decimal

integer

that

represents

a

number

of

hours,

minutes,

and

seconds.

timeout.

Abnormal

termination

of

either

the

DB2

subsystem

or

of

an

application

because

of

the

unavailability

of

resources.

Installation

specifications

are

set

to

determine

both

the

amount

of

time

DB2

is

to

wait

for

IRLM

services

after

starting,

and

the

amount

of

time

IRLM

is

to

wait

if

a

resource

that

an

application

requests

is

unavailable.

If

either

of

these

time

specifications

is

exceeded,

a

timeout

is

declared.

Time-Sharing

Option

(TSO).

An

option

in

MVS

that

provides

interactive

time

sharing

from

remote

terminals.

timestamp.

A

seven-part

value

that

consists

of

a

date

and

time.

The

timestamp

is

expressed

in

years,

months,

days,

hours,

minutes,

seconds,

and

microseconds.

TMP.

Terminal

Monitor

Program.

to-do.

A

state

of

a

unit

of

recovery

that

indicates

that

the

unit

of

recovery’s

changes

to

recoverable

DB2

resources

are

indoubt

and

must

either

be

applied

to

the

disk

media

or

backed

out,

as

determined

by

the

commit

coordinator.

trace.

A

DB2

facility

that

provides

the

ability

to

monitor

and

collect

DB2

monitoring,

auditing,

performance,

accounting,

statistics,

and

serviceability

(global)

data.

transaction

lock.

A

lock

that

is

used

to

control

concurrent

execution

of

SQL

statements.

transaction

program

name.

In

SNA

LU

6.2

conversations,

the

name

of

the

program

at

the

remote

logical

unit

that

is

to

be

the

other

half

of

the

conversation.

transient

XML

data

type.

A

data

type

for

XML

values

that

exists

only

during

query

processing.

transition

table.

A

temporary

table

that

contains

all

the

affected

rows

of

the

subject

table

in

their

state

before

or

after

the

triggering

event

occurs.

Triggered

SQL

statements

in

the

trigger

definition

can

reference

the

table

of

changed

rows

in

the

old

state

or

the

new

state.

transition

variable.

A

variable

that

contains

a

column

value

of

the

affected

row

of

the

subject

table

in

its

state

before

or

after

the

triggering

event

occurs.

Triggered

SQL

statements

in

the

trigger

definition

can

reference

the

set

of

old

values

or

the

set

of

new

values.

tree

structure.

A

data

structure

that

represents

entities

in

nodes,

with

a

most

one

parent

node

for

each

node,

and

with

only

one

root

node.

trigger.

A

set

of

SQL

statements

that

are

stored

in

a

DB2

database

and

executed

when

a

certain

event

occurs

in

a

DB2

table.

table

space

set

•

trigger

Glossary

311

|

|

|

|

|

trigger

activation.

The

process

that

occurs

when

the

trigger

event

that

is

defined

in

a

trigger

definition

is

executed.

Trigger

activation

consists

of

the

evaluation

of

the

triggered

action

condition

and

conditional

execution

of

the

triggered

SQL

statements.

trigger

activation

time.

An

indication

in

the

trigger

definition

of

whether

the

trigger

should

be

activated

before

or

after

the

triggered

event.

trigger

body.

The

set

of

SQL

statements

that

is

executed

when

a

trigger

is

activated

and

its

triggered

action

condition

evaluates

to

true.

A

trigger

body

is

also

called

triggered

SQL

statements.

trigger

cascading.

The

process

that

occurs

when

the

triggered

action

of

a

trigger

causes

the

activation

of

another

trigger.

triggered

action.

The

SQL

logic

that

is

performed

when

a

trigger

is

activated.

The

triggered

action

consists

of

an

optional

triggered

action

condition

and

a

set

of

triggered

SQL

statements

that

are

executed

only

if

the

condition

evaluates

to

true.

triggered

action

condition.

An

optional

part

of

the

triggered

action.

This

Boolean

condition

appears

as

a

WHEN

clause

and

specifies

a

condition

that

DB2

evaluates

to

determine

if

the

triggered

SQL

statements

should

be

executed.

triggered

SQL

statements.

The

set

of

SQL

statements

that

is

executed

when

a

trigger

is

activated

and

its

triggered

action

condition

evaluates

to

true.

Triggered

SQL

statements

are

also

called

the

trigger

body.

trigger

granularity.

A

characteristic

of

a

trigger,

which

determines

whether

the

trigger

is

activated:

v

Only

once

for

the

triggering

SQL

statement

v

Once

for

each

row

that

the

SQL

statement

modifies

triggering

event.

The

specified

operation

in

a

trigger

definition

that

causes

the

activation

of

that

trigger.

The

triggering

event

is

comprised

of

a

triggering

operation

(INSERT,

UPDATE,

or

DELETE)

and

a

subject

table

on

which

the

operation

is

performed.

triggering

SQL

operation.

The

SQL

operation

that

causes

a

trigger

to

be

activated

when

performed

on

the

subject

table.

trigger

package.

A

package

that

is

created

when

a

CREATE

TRIGGER

statement

is

executed.

The

package

is

executed

when

the

trigger

is

activated.

TSO.

Time-Sharing

Option.

TSO

attachment

facility.

A

DB2

facility

consisting

of

the

DSN

command

processor

and

DB2I.

Applications

that

are

not

written

for

the

CICS

or

IMS

environments

can

run

under

the

TSO

attachment

facility.

typed

parameter

marker.

A

parameter

marker

that

is

specified

along

with

its

target

data

type.

It

has

the

general

form:

CAST(?

AS

data-type)

type

1

indexes.

Indexes

that

were

created

by

a

release

of

DB2

before

DB2

Version

4

or

that

are

specified

as

type

1

indexes

in

Version

4.

Contrast

with

type

2

indexes.

As

of

Version

8,

type

1

indexes

are

no

longer

supported.

type

2

indexes.

Indexes

that

are

created

on

a

release

of

DB2

after

Version

7

or

that

are

specified

as

type

2

indexes

in

Version

4

or

later.

U

UCS-2.

Universal

Character

Set,

coded

in

2

octets,

which

means

that

characters

are

represented

in

16-bits

per

character.

UDF.

User-defined

function.

UDT.

User-defined

data

type.

In

DB2

UDB

for

z/OS,

the

term

distinct

type

is

used

instead

of

user-defined

data

type.

See

distinct

type.

uncommitted

read

(UR).

The

isolation

level

that

allows

an

application

to

read

uncommitted

data.

underlying

view.

The

view

on

which

another

view

is

directly

or

indirectly

defined.

undo.

A

state

of

a

unit

of

recovery

that

indicates

that

the

changes

that

the

unit

of

recovery

made

to

recoverable

DB2

resources

must

be

backed

out.

Unicode.

A

standard

that

parallels

the

ISO-10646

standard.

Several

implementations

of

the

Unicode

standard

exist,

all

of

which

have

the

ability

to

represent

a

large

percentage

of

the

characters

that

are

contained

in

the

many

scripts

that

are

used

throughout

the

world.

uniform

resource

locator

(URL).

A

Web

address,

which

offers

a

way

of

naming

and

locating

specific

items

on

the

Web.

union.

An

SQL

operation

that

combines

the

results

of

two

SELECT

statements.

Unions

are

often

used

to

merge

lists

of

values

that

are

obtained

from

several

tables.

unique

constraint.

An

SQL

rule

that

no

two

values

in

a

primary

key,

or

in

the

key

of

a

unique

index,

can

be

the

same.

unique

index.

An

index

that

ensures

that

no

identical

key

values

are

stored

in

a

column

or

a

set

of

columns

in

a

table.

unit

of

recovery.

A

recoverable

sequence

of

operations

within

a

single

resource

manager,

such

as

an

instance

of

DB2.

Contrast

with

unit

of

work.

trigger

activation

•

unit

of

recovery

312

Application

Programming

Guide

and

Reference

for

Java™

unit

of

recovery

identifier

(URID).

The

LOGRBA

of

the

first

log

record

for

a

unit

of

recovery.

The

URID

also

appears

in

all

subsequent

log

records

for

that

unit

of

recovery.

unit

of

work.

A

recoverable

sequence

of

operations

within

an

application

process.

At

any

time,

an

application

process

is

a

single

unit

of

work,

but

the

life

of

an

application

process

can

involve

many

units

of

work

as

a

result

of

commit

or

rollback

operations.

In

a

multisite

update

operation,

a

single

unit

of

work

can

include

several

units

of

recovery.

Contrast

with

unit

of

recovery.

Universal

Unique

Identifier

(UUID).

An

identifier

that

is

immutable

and

unique

across

time

and

space

(in

z/OS).

unlock.

The

act

of

releasing

an

object

or

system

resource

that

was

previously

locked

and

returning

it

to

general

availability

within

DB2.

untyped

parameter

marker.

A

parameter

marker

that

is

specified

without

its

target

data

type.

It

has

the

form

of

a

single

question

mark

(?).

updatability.

The

ability

of

a

cursor

to

perform

positioned

updates

and

deletes.

The

updatability

of

a

cursor

can

be

influenced

by

the

SELECT

statement

and

the

cursor

sensitivity

option

that

is

specified

on

the

DECLARE

CURSOR

statement.

update

hole.

The

location

on

which

a

cursor

is

positioned

when

a

row

in

a

result

table

is

fetched

again

and

the

new

values

no

longer

satisfy

the

search

condition.

DB2

marks

a

row

in

the

result

table

as

an

update

hole

when

an

update

to

the

corresponding

row

in

the

database

causes

that

row

to

no

longer

qualify

for

the

result

table.

update

trigger.

A

trigger

that

is

defined

with

the

triggering

SQL

operation

UPDATE.

upstream.

The

node

in

the

syncpoint

tree

that

is

responsible,

in

addition

to

other

recovery

or

resource

managers,

for

coordinating

the

execution

of

a

two-phase

commit.

UR.

Uncommitted

read.

URE.

Unit

of

recovery

element.

URID

.

Unit

of

recovery

identifier.

URL.

Uniform

resource

locator.

user-defined

data

type

(UDT).

See

distinct

type.

user-defined

function

(UDF).

A

function

that

is

defined

to

DB2

by

using

the

CREATE

FUNCTION

statement

and

that

can

be

referenced

thereafter

in

SQL

statements.

A

user-defined

function

can

be

an

external

function,

a

sourced

function,

or

an

SQL

function.

Contrast

with

built-in

function.

user

view.

In

logical

data

modeling,

a

model

or

representation

of

critical

information

that

the

business

requires.

UTF-8.

Unicode

Transformation

Format,

8-bit

encoding

form,

which

is

designed

for

ease

of

use

with

existing

ASCII-based

systems.

The

CCSID

value

for

data

in

UTF-8

format

is

1208.

DB2

UDB

for

z/OS

supports

UTF-8

in

mixed

data

fields.

UTF-16.

Unicode

Transformation

Format,

16-bit

encoding

form,

which

is

designed

to

provide

code

values

for

over

a

million

characters

and

a

superset

of

UCS-2.

The

CCSID

value

for

data

in

UTF-16

format

is

1200.

DB2

UDB

for

z/OS

supports

UTF-16

in

graphic

data

fields.

UUID.

Universal

Unique

Identifier.

V

value.

The

smallest

unit

of

data

that

is

manipulated

in

SQL.

variable.

A

data

element

that

specifies

a

value

that

can

be

changed.

A

COBOL

elementary

data

item

is

an

example

of

a

variable.

Contrast

with

constant.

variant

function.

See

nondeterministic

function.

varying-length

string.

A

character

or

graphic

string

whose

length

varies

within

set

limits.

Contrast

with

fixed-length

string.

version.

A

member

of

a

set

of

similar

programs,

DBRMs,

packages,

or

LOBs.

A

version

of

a

program

is

the

source

code

that

is

produced

by

precompiling

the

program.

The

program

version

is

identified

by

the

program

name

and

a

timestamp

(consistency

token).

A

version

of

a

DBRM

is

the

DBRM

that

is

produced

by

precompiling

a

program.

The

DBRM

version

is

identified

by

the

same

program

name

and

timestamp

as

a

corresponding

program

version.

A

version

of

a

package

is

the

result

of

binding

a

DBRM

within

a

particular

database

system.

The

package

version

is

identified

by

the

same

program

name

and

consistency

token

as

the

DBRM.

A

version

of

a

LOB

is

a

copy

of

a

LOB

value

at

a

point

in

time.

The

version

number

for

a

LOB

is

stored

in

the

auxiliary

index

entry

for

the

LOB.

view.

An

alternative

representation

of

data

from

one

or

more

tables.

A

view

can

include

all

or

some

of

the

columns

that

are

contained

in

tables

on

which

it

is

defined.

view

check

option.

An

option

that

specifies

whether

every

row

that

is

inserted

or

updated

through

a

view

must

conform

to

the

definition

of

that

view.

A

view

check

option

can

be

specified

with

the

WITH

CASCADED

unit

of

recovery

identifier

(URID)

•

view

check

option

Glossary

313

CHECK

OPTION,

WITH

CHECK

OPTION,

or

WITH

LOCAL

CHECK

OPTION

clauses

of

the

CREATE

VIEW

statement.

Virtual

Storage

Access

Method

(VSAM).

An

access

method

for

direct

or

sequential

processing

of

fixed-

and

varying-length

records

on

disk

devices.

The

records

in

a

VSAM

data

set

or

file

can

be

organized

in

logical

sequence

by

a

key

field

(key

sequence),

in

the

physical

sequence

in

which

they

are

written

on

the

data

set

or

file

(entry-sequence),

or

by

relative-record

number

(in

z/OS).

Virtual

Telecommunications

Access

Method

(VTAM).

An

IBM

licensed

program

that

controls

communication

and

the

flow

of

data

in

an

SNA

network

(in

z/OS).

volatile

table.

A

table

for

which

SQL

operations

choose

index

access

whenever

possible.

VSAM.

Virtual

Storage

Access

Method.

VTAM.

Virtual

Telecommunication

Access

Method

(in

z/OS).

W

warm

start.

The

normal

DB2

restart

process,

which

involves

reading

and

processing

log

records

so

that

data

that

is

under

the

control

of

DB2

is

consistent.

Contrast

with

cold

start.

WLM

application

environment.

A

z/OS

Workload

Manager

attribute

that

is

associated

with

one

or

more

stored

procedures.

The

WLM

application

environment

determines

the

address

space

in

which

a

given

DB2

stored

procedure

runs.

write

to

operator

(WTO).

An

optional

user-coded

service

that

allows

a

message

to

be

written

to

the

system

console

operator

informing

the

operator

of

errors

and

unusual

system

conditions

that

might

need

to

be

corrected

(in

z/OS).

WTO.

Write

to

operator.

WTOR.

Write

to

operator

(WTO)

with

reply.

X

XCF.

See

cross-system

coupling

facility.

XES.

See

cross-system

extended

services.

XML.

See

Extensible

Markup

Language.

XML

attribute.

A

name-value

pair

within

a

tagged

XML

element

that

modifies

certain

features

of

the

element.

XML

element.

A

logical

structure

in

an

XML

document

that

is

delimited

by

a

start

and

an

end

tag.

XML

node.

The

smallest

unit

of

valid,

complete

structure

in

a

document.

For

example,

a

node

can

represent

an

element,

an

attribute,

or

a

text

string.

XML

publishing

functions.

Functions

that

return

XML

values

from

SQL

values.

X/Open.

An

independent,

worldwide

open

systems

organization

that

is

supported

by

most

of

the

world’s

largest

information

systems

suppliers,

user

organizations,

and

software

companies.

X/Open's

goal

is

to

increase

the

portability

of

applications

by

combining

existing

and

emerging

standards.

XRF.

Extended

recovery

facility.

Z

z/OS.

An

operating

system

for

the

eServer™

product

line

that

supports

64-bit

real

and

virtual

storage.

z/OS

Distributed

Computing

Environment

(z/OS

DCE).

A

set

of

technologies

that

are

provided

by

the

Open

Software

Foundation

to

implement

distributed

computing.

Virtual

Storage

Access

Method

(VSAM)

•

z/OS

Distributed

Computing

Environment

(z/OS

DCE)

314

Application

Programming

Guide

and

Reference

for

Java™

|
|

|

|
|

|
|

|

|

|

|

|

|

|

Bibliography

DB2

Universal

Database

for

z/OS

Version

8

product

information:

The

following

information

about

Version

8

of

DB2

UDB

for

z/OS

is

available

in

both

printed

and

softcopy

formats:

v

DB2

Administration

Guide,

SC18-7413

v

DB2

Application

Programming

and

SQL

Guide,

SC18-7415

v

DB2

Application

Programming

Guide

and

Reference

for

Java,

SC18-7414

v

DB2

Command

Reference,

SC18-7416

v

DB2

Data

Sharing:

Planning

and

Administration,

SC18-7417

v

DB2

Diagnosis

Guide

and

Reference,

LY37-3201

v

DB2

Diagnostic

Quick

Reference

Card,

LY37-3202

v

DB2

Installation

Guide,

GC18-7418

v

DB2

Licensed

Program

Specifications,

GC18-7420

v

DB2

Messages

and

Codes,

GC18-7422

v

DB2

ODBC

Guide

and

Reference,

SC18-7423

v

DB2

Reference

Summary,

SX26-3853

v

DB2

Release

Planning

Guide,

SC18-7425

v

DB2

SQL

Reference,

SC18-7426

v

DB2

Utility

Guide

and

Reference,

SC18-7427

v

DB2

What's

New?,

GC18-7428

v

DB2

XML

Extender

for

z/OS

Administration

and

Programming,

SC18-7431

v

Program

Directory

for

IBM

DB2

Universal

Database

for

z/OS,

GI10-8566

The

following

information

is

provided

in

softcopy

format

only:

v

DB2

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

(Version

7

level)

v

DB2

Net

Search

Extender

Administration

and

Programming

Guide

(Version

7

level)

v

DB2

RACF

Access

Control

Module

Guide

(Version

8

level)

v

DB2

Reference

for

Remote

DRDA

Requesters

and

Servers

(Version

8

level)

v

DB2

Text

Extender

Administration

and

Programming

(Version

7

level)

You

can

find

DB2

UDB

for

z/OS

information

on

the

library

Web

page

at

www.ibm.com/db2/zos/v8books.html

The

preceding

information

is

published

by

IBM.

One

additional

book,

which

is

written

by

IBM

and

published

by

Pearson

Education,

Inc.,

is

The

Official

Introduction

to

DB2

UDB

for

z/OS,

ISBN

0-13-147750-1.

This

book

provides

an

overview

of

the

Version

8

DB2

UDB

for

z/OS

product

and

is

recommended

reading

for

people

who

are

preparing

to

take

Certification

Exam

700:

DB2

UDB

V8.1

Family

Fundamentals.

Books

and

resources

about

related

products:

APL2®

v

APL2

Programming

Guide,

SH21-1072

v

APL2

Programming:

Language

Reference,

SH21-1061

v

APL2

Programming:

Using

Structured

Query

Language

(SQL),

SH21-1057

BookManager®

READ/MVS

v

BookManager

READ/MVS

V1R3:

Installation

Planning

&

Customization,

SC38-2035

C

language:

IBM

C/C++

for

z/OS

v

z/OS

C/C++

Programming

Guide,

SC09-4765

v

z/OS

C/C++

Run-Time

Library

Reference,

SA22-7821

Character

Data

Representation

Architecture

v

Character

Data

Representation

Architecture

Overview,

GC09-2207

v

Character

Data

Representation

Architecture

Reference

and

Registry,

SC09-2190

CICS

Transaction

Server

for

z/OS

The

publication

order

numbers

below

are

for

Version

2

Release

2

and

Version

2

Release

3

(with

the

release

2

number

listed

first).

v

CICS

Transaction

Server

for

z/OS

Information

Center,

SK3T-6903

or

SK3T-6957.

v

CICS

Transaction

Server

for

z/OS

Application

Programming

Guide,

SC34-5993

or

SC34-6231

v

CICS

Transaction

Server

for

z/OS

Application

Programming

Reference,

SC34-5994

or

SC34-6232

v

CICS

Transaction

Server

for

z/OS

CICS-RACF

Security

Guide,

SC34-6011

or

SC34-6249

©

Copyright

IBM

Corp.

1998,

2004

315

v

CICS

Transaction

Server

for

z/OS

CICS

Supplied

Transactions,

SC34-5992

or

SC34-6230

v

CICS

Transaction

Server

for

z/OS

Customization

Guide,

SC34-5989

or

SC34-6227

v

CICS

Transaction

Server

for

z/OS

Data

Areas,

LY33-6100

or

LY33-6103

v

CICS

Transaction

Server

for

z/OS

DB2

Guide,

SC34-6014

or

SC34-6252

v

CICS

Transaction

Server

for

z/OS

External

Interfaces

Guide,

SC34-6006

or

SC34-6244

v

CICS

Transaction

Server

for

z/OS

Installation

Guide,

GC34-5985

or

GC34-6224

v

CICS

Transaction

Server

for

z/OS

Intercommunication

Guide,

SC34-6005

or

SC34-6243

v

CICS

Transaction

Server

for

z/OS

Messages

and

Codes,

GC34-6003

or

GC34-6241

v

CICS

Transaction

Server

for

z/OS

Operations

and

Utilities

Guide,

SC34-5991

or

SC34-6229

v

CICS

Transaction

Server

for

z/OS

Performance

Guide,

SC34-6009

or

SC34-6247

v

CICS

Transaction

Server

for

z/OS

Problem

Determination

Guide,

SC34-6002

or

SC34-6239

v

CICS

Transaction

Server

for

z/OS

Release

Guide,

GC34-5983

or

GC34-6218

v

CICS

Transaction

Server

for

z/OS

Resource

Definition

Guide,

SC34-5990

or

SC34-6228

v

CICS

Transaction

Server

for

z/OS

System

Definition

Guide,

SC34-5988

or

SC34–6226

v

CICS

Transaction

Server

for

z/OS

System

Programming

Reference,

SC34-5595

or

SC34–6233

CICS

Transaction

Server

for

OS/390

v

CICS

Transaction

Server

for

OS/390

Application

Programming

Guide,

SC33-1687

v

CICS

Transaction

Server

for

OS/390

DB2

Guide,

SC33-1939

v

CICS

Transaction

Server

for

OS/390

External

Interfaces

Guide,

SC33-1944

v

CICS

Transaction

Server

for

OS/390

Resource

Definition

Guide,

SC33-1684

COBOL:

IBM

COBOL

v

IBM

COBOL

Language

Reference,

SC27-1408

v

IBM

COBOL

for

MVS

&

VM

Programming

Guide,

SC27-1412

Database

Design

v

DB2

for

z/OS

and

OS/390

Development

for

Performance

Volume

I

by

Gabrielle

Wiorkowski,

Gabrielle

&

Associates,

ISBN

0-96684-605-2

v

DB2

for

z/OS

and

OS/390

Development

for

Performance

Volume

II

by

Gabrielle

Wiorkowski,

Gabrielle

&

Associates,

ISBN

0-96684-606-0

v

Handbook

of

Relational

Database

Design

by

C.

Fleming

and

B.

Von

Halle,

Addison

Wesley,

ISBN

0-20111-434-8

DB2

Administration

Tool

v

DB2

Administration

Tool

for

z/OS

User's

Guide

and

Reference,

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

DB2

Buffer

Pool

Analyzer

for

z/OS

v

DB2

Buffer

Pool

Tool

for

z/OS

User's

Guide

and

Reference,

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

DB2

Connect™

v

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition,

GC09-4833

v

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition,

GC09-4834

v

IBM

DB2

Connect

User's

Guide,

SC09-4835

DB2

DataPropagator™

v

DB2

Universal

Database

Replication

Guide

and

Reference,

SC27-1121

DB2

Data

Encryption

for

IMS

and

DB2

Databases

v

IBM

Data

Encryption

for

IMS

and

DB2

Databases

User's

Guide,

SC18-7336

DB2

Performance

Expert

for

z/OS,

Version

1

The

following

books

are

part

of

the

DB2

Performance

Expert

library.

Some

of

these

books

include

information

about

the

following

tools:

IBM

DB2

Performance

Expert

for

z/OS;

IBM

DB2

Performance

Monitor

for

z/OS;

and

DB2

Buffer

Pool

Analyzer

for

z/OS.

v

DB2

Performance

Expert

for

z/OS

Buffer

Pool

Analyzer

User's

Guide,

SC18-7972

v

DB2

Performance

Expert

for

z/OS

and

Multiplatforms

Installation

and

Customization,

SC18-7973

v

DB2

Performance

Expert

for

z/OS

Messages,

SC18-7974

v

DB2

Performance

Expert

for

z/OS

Monitoring

Performance

from

ISPF,

SC18-7975

316

Application

Programming

Guide

and

Reference

for

Java™

v

DB2

Performance

Expert

for

z/OS

and

Multiplatforms

Monitoring

Performance

from

the

Workstation,

SC18-7976

v

DB2

Performance

Expert

for

z/OS

Program

Directory,

GI10-8549

v

DB2

Performance

Expert

for

z/OS

Report

Command

Reference,

SC18-7977

v

DB2

Performance

Expert

for

z/OS

Report

Reference,

SC18-7978

v

DB2

Performance

Expert

for

z/OS

Reporting

User's

Guide,

SC18-7979

DB2

Query

Management

Facility

(QMF)

Version

8.1

v

DB2

Query

Management

Facility:

DB2

QMF

High

Performance

Option

User’s

Guide

for

TSO/CICS,

SC18-7450

v

DB2

Query

Management

Facility:

DB2

QMF

Messages

and

Codes,

GC18-7447

v

DB2

Query

Management

Facility:

DB2

QMF

Reference,

SC18-7446

v

DB2

Query

Management

Facility:

Developing

DB2

QMF

Applications,

SC18-7651

v

DB2

Query

Management

Facility:

Getting

Started

with

DB2

QMF

for

Windows

and

DB2

QMF

for

WebSphere,

SC18-7449

v

DB2

Query

Management

Facility:

Installing

and

Managing

DB2

QMF

for

TSO/CICS,

GC18-7444

v

DB2

Query

Management

Facility:

Installing

and

Managing

DB2

QMF

for

Windows

and

DB2

QMF

for

WebSphere,

GC18-7448

v

DB2

Query

Management

Facility:

Introducing

DB2

QMF,

GC18-7443

v

DB2

Query

Management

Facility:

Using

DB2

QMF,

SC18-7445

v

DB2

Query

Management

Facility:

DB2

QMF

Visionary

Developer's

Guide,

SC18-9093

v

DB2

Query

Management

Facility:

DB2

QMF

Visionary

Getting

Started

Guide,

GC18-9092

DB2

Redbooks™

For

access

to

all

IBM

Redbooks

about

DB2,

see

the

IBM

Redbooks

Web

page

at

www.ibm.com/redbooks

DB2

Server

for

VSE

&

VM

v

DB2

Server

for

VM:

DBS

Utility,

SC09-2983

DB2

Universal

Database

Cross-Platform

information

v

IBM

DB2

Universal

Database

SQL

Reference

for

Cross-Platform

Development,

available

at

www.ibm.com/software/data/developer/cpsqlref/

DB2

Universal

Database

for

iSeries

The

following

books

are

available

at

www.ibm.com/iseries/infocenter

v

DB2

Universal

Database

for

iSeries

Performance

and

Query

Optimization

v

DB2

Universal

Database

for

iSeries

Database

Programming

v

DB2

Universal

Database

for

iSeries

SQL

Programming

Concepts

v

DB2

Universal

Database

for

iSeries

SQL

Programming

with

Host

Languages

v

DB2

Universal

Database

for

iSeries

SQL

Reference

v

DB2

Universal

Database

for

iSeries

Distributed

Data

Management

v

DB2

Universal

Database

for

iSeries

Distributed

Database

Programming

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows:

v

DB2

Universal

Database

Administration

Guide:

Planning,

SC09-4822

v

DB2

Universal

Database

Administration

Guide:

Implementation,

SC09-4820

v

DB2

Universal

Database

Administration

Guide:

Performance,

SC09-4821

v

DB2

Universal

Database

Administrative

API

Reference,

SC09-4824

v

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications,

SC09-4825

v

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volumes

1

and

2,

SC09-4849

and

SC09-4850

v

DB2

Universal

Database

Command

Reference,

SC09-4828

v

DB2

Universal

Database

SQL

Reference

Volume

1,

SC09-4844

v

DB2

Universal

Database

SQL

Reference

Volume

2,

SC09-4845

Device

Support

Facilities

v

Device

Support

Facilities

User's

Guide

and

Reference,

GC35-0033

DFSMS

These

books

provide

information

about

a

variety

of

components

of

DFSMS,

including

z/OS

DFSMS,

z/OS

DFSMSdfp™,

z/OS

DFSMSdss,

z/OS

DFSMShsm,

and

z/OS

DFP.

v

z/OS

DFSMS

Access

Method

Services

for

Catalogs,

SC26-7394

v

z/OS

DFSMSdss

Storage

Administration

Guide,

SC35-0423

Bibliography

317

v

z/OS

DFSMSdss

Storage

Administration

Reference,

SC35-0424

v

z/OS

DFSMShsm

Managing

Your

Own

Data,

SC35-0420

v

z/OS

DFSMSdfp:

Using

DFSMSdfp

in

the

z/OS

Environment,

SC26-7473

v

z/OS

DFSMSdfp

Diagnosis

Reference,

GY27-7618

v

z/OS

DFSMS:

Implementing

System-Managed

Storage,

SC27-7407

v

z/OS

DFSMS:

Macro

Instructions

for

Data

Sets,

SC26-7408

v

z/OS

DFSMS:

Managing

Catalogs,

SC26-7409

v

z/OS

DFSMS:

Program

Management,

SA22-7643

v

z/OS

MVS

Program

Management:

Advanced

Facilities,

SA22-7644

v

z/OS

DFSMSdfp

Storage

Administration

Reference,

SC26-7402

v

z/OS

DFSMS:

Using

Data

Sets,

SC26-7410

v

DFSMS/MVS:

Using

Advanced

Services

,

SC26-7400

v

DFSMS/MVS:

Utilities,

SC26-7414

DFSORT™

v

DFSORT

Application

Programming:

Guide,

SC33-4035

v

DFSORT

Installation

and

Customization,

SC33-4034

Distributed

Relational

Database

Architecture

v

Open

Group

Technical

Standard;

the

Open

Group

presently

makes

the

following

DRDA

books

available

through

its

Web

site

at

www.opengroup.org

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

1:

Distributed

Relational

Database

Architecture

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

2:

Formatted

Data

Object

Content

Architecture

–

Open

Group

Technical

Standard,

DRDA

Version

3

Vol.

3:

Distributed

Data

Management

Architecture

Domain

Name

System

v

DNS

and

BIND,

Third

Edition,

Paul

Albitz

and

Cricket

Liu,

O’Reilly,

ISBN

0-59600-158-4

Education

v

Information

about

IBM

educational

offerings

is

available

on

the

Web

at

www.ibm.com/software/info/education/

v

A

collection

of

glossaries

of

IBM

terms

is

available

on

the

IBM

Terminology

Web

site

at

www.ibm.com/ibm/terminology/index.html

eServer

zSeries®

v

IBM

eServer

zSeries

Processor

Resource/System

Manager

Planning

Guide,

SB10-7033

Fortran:

VS

Fortran

v

VS

Fortran

Version

2:

Language

and

Library

Reference,

SC26-4221

v

VS

Fortran

Version

2:

Programming

Guide

for

CMS

and

MVS,

SC26-4222

High

Level

Assembler

v

High

Level

Assembler

for

MVS

and

VM

and

VSE

Language

Reference,

SC26-4940

v

High

Level

Assembler

for

MVS

and

VM

and

VSE

Programmer's

Guide,

SC26-4941

ICSF

v

z/OS

ICSF

Overview,

SA22-7519

v

Integrated

Cryptographic

Service

Facility

Administrator's

Guide,

SA22-7521

IMS

Version

8

IMS

product

information

is

available

on

the

IMS

Library

Web

page,

which

you

can

find

at

www.ibm.com/ims

v

IMS

Administration

Guide:

System,

SC27-1284

v

IMS

Administration

Guide:

Transaction

Manager,

SC27-1285

v

IMS

Application

Programming:

Database

Manager,

SC27-1286

v

IMS

Application

Programming:

Design

Guide,

SC27-1287

v

IMS

Application

Programming:

Transaction

Manager,

SC27-1289

v

IMS

Command

Reference,

SC27-1291

v

IMS

Customization

Guide,

SC27-1294

v

IMS

Install

Volume

1:

Installation

Verification,

GC27-1297

v

IMS

Install

Volume

2:

System

Definition

and

Tailoring,

GC27-1298

v

IMS

Messages

and

Codes

Volumes

1

and

2,

GC27-1301

and

GC27-1302

v

IMS

Utilities

Reference:

System,

SC27-1309

General

information

about

IMS

Batch

Terminal

Simulator

for

z/OS

is

available

on

the

Web

at

www.ibm.com/software/data/db2imstools/

library.html

IMS

DataPropagator

v

IMS

DataPropagator

for

z/OS

Administrator's

Guide

for

Log,

SC27-1216

v

IMS

DataPropagator:

An

Introduction,

GC27-1211

318

Application

Programming

Guide

and

Reference

for

Java™

v

IMS

DataPropagator

for

z/OS

Reference,

SC27-1210

ISPF

v

z/OS

ISPF

Dialog

Developer’s

Guide,

SC23-4821

v

z/OS

ISPF

Messages

and

Codes,

SC34-4815

v

z/OS

ISPF

Planning

and

Customizing,

GC34-4814

v

z/OS

ISPF

User’s

Guide

Volumes

1

and

2,

SC34-4822

and

SC34-4823

Java

for

z/OS

v

Persistent

Reusable

Java

Virtual

Machine

User's

Guide,

SC34-6201

Language

Environment

v

Debug

Tool

User's

Guide

and

Reference,

SC18-7171

v

Debug

Tool

for

z/OS

and

OS/390

Reference

and

Messages,

SC18-7172

v

z/OS

Language

Environment

Concepts

Guide,

SA22-7567

v

z/OS

Language

Environment

Customization,

SA22-7564

v

z/OS

Language

Environment

Debugging

Guide,

GA22-7560

v

z/OS

Language

Environment

Programming

Guide,

SA22-7561

v

z/OS

Language

Environment

Programming

Reference,

SA22-7562

MQSeries®

v

MQSeries

Application

Messaging

Interface,

SC34-5604

v

MQSeries

for

OS/390

Concepts

and

Planning

Guide,

GC34-5650

v

MQSeries

for

OS/390

System

Setup

Guide,

SC34-5651

National

Language

Support

v

National

Language

Design

Guide

Volume

1,

SE09-8001

v

IBM

National

Language

Support

Reference

Manual

Volume

2,

SE09-8002

NetView®

v

Tivoli

NetView

for

z/OS

Installation:

Getting

Started,

SC31-8872

v

Tivoli

NetView

for

z/OS

User's

Guide,

GC31-8849

Microsoft

ODBC

Information

about

Microsoft

ODBC

is

available

at

http://msdn.microsoft.com/library/

Parallel

Sysplex

Library

v

System/390

9672

Parallel

Transaction

Server,

9672

Parallel

Enterprise

Server,

9674

Coupling

Facility

System

Overview

For

R1/R2/R3

Based

Models,

SB10-7033

v

z/OS

Parallel

Sysplex

Application

Migration,

SA22-7662

v

z/OS

Parallel

Sysplex

Overview:

An

Introduction

to

Data

Sharing

and

Parallelism,

SA22-7661

v

z/OS

Parallel

Sysplex

Test

Report,

SA22-7663

The

Parallel

Sysplex

Configuration

Assistant

is

available

at

www.ibm.com/s390/pso/psotool

PL/I:

Enterprise

PL/I

for

z/OS

and

OS/390

v

IBM

Enterprise

PL/I

for

z/OS

and

OS/390

Language

Reference,

SC27-1460

v

IBM

Enterprise

PL/I

for

z/OS

and

OS/390

Programming

Guide,

SC27-1457

PL/I:

OS

PL/I

v

OS

PL/I

Programming

Guide,

SC26-4307

SMP/E

v

SMP/E

for

z/OS

and

OS/390

Reference,

SA22-7772

v

SMP/E

for

z/OS

and

OS/390

User's

Guide,

SA22-7773

Storage

Management

v

z/OS

DFSMS:

Implementing

System-Managed

Storage,

SC26-7407

v

MVS/ESA

Storage

Management

Library:

Managing

Data,

SC26-7397

v

MVS/ESA

Storage

Management

Library:

Managing

Storage

Groups,

SC35-0421

v

MVS

Storage

Management

Library:

Storage

Management

Subsystem

Migration

Planning

Guide,

GC26-7398

System

Network

Architecture

(SNA)

v

SNA

Formats,

GA27-3136

v

SNA

LU

6.2

Peer

Protocols

Reference,

SC31-6808

v

SNA

Transaction

Programmer's

Reference

Manual

for

LU

Type

6.2,

GC30-3084

v

SNA/Management

Services

Alert

Implementation

Guide,

GC31-6809

TCP/IP

v

IBM

TCP/IP

for

MVS:

Customization

&

Administration

Guide,

SC31-7134

v

IBM

TCP/IP

for

MVS:

Diagnosis

Guide,

LY43-0105

v

IBM

TCP/IP

for

MVS:

Messages

and

Codes,

SC31-7132

Bibliography

319

v

IBM

TCP/IP

for

MVS:

Planning

and

Migration

Guide,

SC31-7189

TotalStorage®

Enterprise

Storage

Server

v

RAMAC

Virtual

Array:

Implementing

Peer-to-Peer

Remote

Copy,

SG24-5680

v

Enterprise

Storage

Server

Introduction

and

Planning,

GC26-7444

v

IBM

RAMAC

Virtual

Array,

SG24-6424

Unicode

v

z/OS

Support

for

Unicode:

Using

Conversion

Services,

SA22-7649

Information

about

Unicode,

the

Unicode

consortium,

the

Unicode

standard,

and

standards

conformance

requirements

is

available

at

www.unicode.org

VTAM

v

Planning

for

NetView,

NCP,

and

VTAM,

SC31-8063

v

VTAM

for

MVS/ESA

Diagnosis,

LY43-0078

v

VTAM

for

MVS/ESA

Messages

and

Codes,

GC31-8369

v

VTAM

for

MVS/ESA

Network

Implementation

Guide,

SC31-8370

v

VTAM

for

MVS/ESA

Operation,

SC31-8372

v

VTAM

for

MVS/ESA

Programming,

SC31-8373

v

VTAM

for

MVS/ESA

Programming

for

LU

6.2,

SC31-8374

v

VTAM

for

MVS/ESA

Resource

Definition

Reference,

SC31-8377

WebSphere

family

v

WebSphere

MQ

Integrator

Broker:

Administration

Guide,

SC34-6171

v

WebSphere

MQ

Integrator

Broker

for

z/OS:

Customization

and

Administration

Guide,

SC34-6175

v

WebSphere

MQ

Integrator

Broker:

Introduction

and

Planning,

GC34-5599

v

WebSphere

MQ

Integrator

Broker:

Using

the

Control

Center,

SC34-6168

z/Architecture™

v

z/Architecture

Principles

of

Operation,

SA22-7832

z/OS

v

z/OS

C/C++

Programming

Guide,

SC09-4765

v

z/OS

C/C++

Run-Time

Library

Reference,

SA22-7821

v

z/OS

C/C++

User's

Guide,

SC09-4767

v

z/OS

Communications

Server:

IP

Configuration

Guide,

SC31-8875

v

z/OS

DCE

Administration

Guide,

SC24-5904

v

z/OS

DCE

Introduction,

GC24-5911

v

z/OS

DCE

Messages

and

Codes,

SC24-5912

v

z/OS

Information

Roadmap,

SA22-7500

v

z/OS

Introduction

and

Release

Guide,

GA22-7502

v

z/OS

JES2

Initialization

and

Tuning

Guide,

SA22-7532

v

z/OS

JES3

Initialization

and

Tuning

Guide,

SA22-7549

v

z/OS

Language

Environment

Concepts

Guide,

SA22-7567

v

z/OS

Language

Environment

Customization,

SA22-7564

v

z/OS

Language

Environment

Debugging

Guide,

GA22-7560

v

z/OS

Language

Environment

Programming

Guide,

SA22-7561

v

z/OS

Language

Environment

Programming

Reference,

SA22-7562

v

z/OS

Managed

System

Infrastructure

for

Setup

User's

Guide,

SC33-7985

v

z/OS

MVS

Diagnosis:

Procedures,

GA22-7587

v

z/OS

MVS

Diagnosis:

Reference,

GA22-7588

v

z/OS

MVS

Diagnosis:

Tools

and

Service

Aids,

GA22-7589

v

z/OS

MVS

Initialization

and

Tuning

Guide,

SA22-7591

v

z/OS

MVS

Initialization

and

Tuning

Reference,

SA22-7592

v

z/OS

MVS

Installation

Exits,

SA22-7593

v

z/OS

MVS

JCL

Reference,

SA22-7597

v

z/OS

MVS

JCL

User's

Guide,

SA22-7598

v

z/OS

MVS

Planning:

Global

Resource

Serialization,

SA22-7600

v

z/OS

MVS

Planning:

Operations,

SA22-7601

v

z/OS

MVS

Planning:

Workload

Management,

SA22-7602

v

z/OS

MVS

Programming:

Assembler

Services

Guide,

SA22-7605

v

z/OS

MVS

Programming:

Assembler

Services

Reference,

Volumes

1

and

2,

SA22-7606

and

SA22-7607

v

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide,

SA22-7608

v

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

Volumes

1-4,

SA22-7609,

SA22-7610,

SA22-7611,

and

SA22-7612

v

z/OS

MVS

Programming:

Callable

Services

for

High-Level

Languages,

SA22-7613

v

z/OS

MVS

Programming:

Extended

Addressability

Guide,

SA22-7614

v

z/OS

MVS

Programming:

Sysplex

Services

Guide,

SA22-7617

v

z/OS

MVS

Programming:

Sysplex

Services

Reference,

SA22-7618

320

Application

Programming

Guide

and

Reference

for

Java™

v

z/OS

MVS

Programming:

Workload

Management

Services,

SA22-7619

v

z/OS

MVS

Recovery

and

Reconfiguration

Guide,

SA22-7623

v

z/OS

MVS

Routing

and

Descriptor

Codes,

SA22-7624

v

z/OS

MVS

Setting

Up

a

Sysplex,

SA22-7625

v

z/OS

MVS

System

Codes

SA22-7626

v

z/OS

MVS

System

Commands,

SA22-7627

v

z/OS

MVS

System

Messages

Volumes

1-10,

SA22-7631,

SA22-7632,

SA22-7633,

SA22-7634,

SA22-7635,

SA22-7636,

SA22-7637,

SA22-7638,

SA22-7639,

and

SA22-7640

v

z/OS

MVS

Using

the

Subsystem

Interface,

SA22-7642

v

z/OS

Planning

for

Multilevel

Security,

SA22-7509

v

z/OS

RMF

User's

Guide,

SC33-7990

v

z/OS

Security

Server

Network

Authentication

Server

Administration,

SC24-5926

v

z/OS

Security

Server

RACF

Auditor's

Guide,

SA22-7684

v

z/OS

Security

Server

RACF

Command

Language

Reference,

SA22-7687

v

z/OS

Security

Server

RACF

Macros

and

Interfaces,

SA22-7682

v

z/OS

Security

Server

RACF

Security

Administrator's

Guide,

SA22-7683

v

z/OS

Security

Server

RACF

System

Programmer's

Guide,

SA22-7681

v

z/OS

Security

Server

RACROUTE

Macro

Reference,

SA22-7692

v

z/OS

Support

for

Unicode:

Using

Conversion

Services,

SA22-7649

v

z/OS

TSO/E

CLISTs,

SA22-7781

v

z/OS

TSO/E

Command

Reference,

SA22-7782

v

z/OS

TSO/E

Customization,

SA22-7783

v

z/OS

TSO/E

Messages,

SA22-7786

v

z/OS

TSO/E

Programming

Guide,

SA22-7788

v

z/OS

TSO/E

Programming

Services,

SA22-7789

v

z/OS

TSO/E

REXX

Reference,

SA22-7790

v

z/OS

TSO/E

User's

Guide,

SA22-7794

v

z/OS

UNIX

System

Services

Command

Reference,

SA22-7802

v

z/OS

UNIX

System

Services

Messages

and

Codes,

SA22-7807

v

z/OS

UNIX

System

Services

Planning,

GA22-7800

v

z/OS

UNIX

System

Services

Programming:

Assembler

Callable

Services

Reference,

SA22-7803

v

z/OS

UNIX

System

Services

User's

Guide,

SA22-7801

z/OS

mSys

for

Setup

v

z/OS

Managed

System

Infrastructure

for

Setup

DB2

Customization

Center

User's

Guide,

available

in

softcopy

format

at

www.ibm.com/db2/zos/v8books.html

v

z/OS

Managed

System

Infrastructure

for

Setup

User's

Guide,

SC33-7985

Bibliography

321

322

Application

Programming

Guide

and

Reference

for

Java™

Index

A
accessing

packages
JDBC

6

SQLJ

56

assignment

clause
SQLJ

141

attachment

facilities
description

250

RRSAF

250

automatically

generated

keys
retrieving

in

JDBC

application

35

B
batch

updates
JDBC

43

SQLJ

90

binding

a

package
SQLJ

207

binding

a

plan
SQLJ

207

C
CallableStatement

calling

stored

procedures

19

calling

stored

procedures
CallableStatement

19

CICS
abends

275

attaching

to

DB2

274

autoCommit

default

275

closing

JDBC

connection

275

Connection

with

default

URL

275

db2genJDBC

parameters

273

number

of

cursors

274

run-time

properties

file

273

running

traces

275

special

considerations

273

closing

connection
importance

of

14,

65

collecting

trace

data
SQLJ

263

com.ibm.db2.jcc.DB2BaseDataSource

class
DB2

Universal

JDBC

Driver-only

methods

150

DB2

Universal

JDBC

Driver-only

properties

150

com.ibm.db2.jcc.DB2Connection

interface
DB2

Universal

JDBC

Driver-only

methods

152

com.ibm.db2.jcc.DB2DatabaseMetaData

interface
DB2

Universal

JDBC

Driver-only

methods

155

com.ibm.db2.jcc.DB2Diagnosable

interface
DB2

Universal

JDBC

Driver-only

methods

155

com.ibm.db2.jcc.DB2ExceptionFormatter

class
DB2

Universal

JDBC

Driver-only

methods

156

com.ibm.db2.jcc.DB2JccDataSource

interface
DB2

Universal

JDBC

Driver-only

methods

156

com.ibm.db2.jcc.DB2RowID

class
DB2

Universal

JDBC

Driver-only

methods

157

com.ibm.db2.jcc.DB2SimpleDataSource
definition

50

com.ibm.db2.jcc.DB2SimpleDataSource

class
DB2

Universal

JDBC

Driver-only

methods

157

DB2

Universal

JDBC

Driver-only

properties

157

com.ibm.db2.jcc.DB2Sqlca

class
DB2

Universal

JDBC

Driver-only

methods

157

com.ibm.db2.jcc.DB2SystemMonitor

interface
DB2

Universal

JDBC

Driver-only

methods

158

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource
definition

50

comment
SQLJ

58

commit
transaction,

JDBC

14

comparison

of

driver

support
JDBC

APIs

114

configuring
JDBC

219,

236

SQLJ

219,

236

connecting

to

a

data

source
DataSource

interface

12

multiple

context

support,

JDBC/SQLJ

Driver

for

OS/390

261

SQLJ

58

connection

context
class

58

closing

65

default

58

object

58

connection

declaration

clause
SQLJ

136

connection

object

261

connection

pooling
overview

251

connection

sharing

262

context

clause
SQLJ

138,

139

creating
DB2

tables,

SQLJ

66

creating

and

deploying
DataSource

objects

50

creating

DBRMs
SQLJ

194

customizing

a

serialized

profile
SQLJ

194

customizing

Java

environment

219,

236

D
data

source
connecting

to

using

JDBC

6

connecting

using

DriverManager

8

connecting

using

JDBC

DataSource

12

connecting

using

JDBC

DriverManager

10

©

Copyright

IBM

Corp.

1998,

2004

323

data

type

mappings
Java,

JDBC,

and

SQL

101

DatabaseMetaData
retrieving

data

source

information,

JDBC

41

DataSource

interface
SQLJ

61

DataSource

objects
creating

and

deploying

50

DB2

Universal

JDBC

Driver
connecting

to

a

data

source
DriverManager

interface

8

encrypted

user

ID

or

encrypted

password

security

246

example,

tracing

265

extended

client

information

51

handling

SQLException

20

JDBC

extensions

150

Kerberos

security

247

LOB

support,

JDBC

28

LOB

support,

SQLJ

82

properties

106

return

codes,

internal

errors

165

security

243

SQLSTATEs,

internal

errors

165

user

ID

and

password

security

243

user

ID-only

security

245

DB2

Universal

JDBC

Driver-only

methods
com.ibm.db2.jcc.DB2BaseDataSource

class

150

com.ibm.db2.jcc.DB2Connection

interface

152

com.ibm.db2.jcc.DB2DatabaseMetaData

interface

155

com.ibm.db2.jcc.DB2Diagnosable

interface

155

com.ibm.db2.jcc.DB2ExceptionFormatter

class

156

com.ibm.db2.jcc.DB2JccDataSource

interface

156

com.ibm.db2.jcc.DB2RowID

class

157

com.ibm.db2.jcc.DB2SimpleDataSource

class

157

com.ibm.db2.jcc.DB2sqlca

class

157

com.ibm.db2.jcc.DB2SystemMonitor

interface

158

DB2

Universal

JDBC

Driver-only

properties
com.ibm.db2.jcc.DB2BaseDataSource

class

150

com.ibm.db2.jcc.DB2SimpleDataSource

class

157

DB2Diagnosable

class
retrieving

the

SQLCA

77

db2profc

command
options

194

parameters

194

db2sqljcustomize

command
options

194

parameters

194

db2sqljprint
formation

JCC

customized

profile

264

DBINFO

clause
CREATE

FUNCTION

statement

176

CREATE

PROCEDURE

statement

176

declaring
variables

in

a

JDBC

application

6

default

connection

context

58

diagnosing

JDBC

problems

263

diagnosing

SQLJ

problems

263,

270

diagnosis

utilities
SQLJ

271

distinct

type
using

in

JDBC

application

33

using

in

SQLJ

application

87

distributed

transaction
JDBC

and

SQLJ

253

DriverManager

interface
SQLJ

58

DYNAMICRULES(BIND)
recommended

for

SQLJ

programs

211

E
encrypted

user

ID

or

encrypted

password

security
DB2

Universal

JDBC

Driver

246

environment
Java

stored

procedure

167

Java

user-defined

function

167

environment

variables
JDBC

219,

236

SQLJ

219,

236

error

handling
SQLJ

77

executable

clause
SQLJ

138

executing

SQL
JDBC

15

SQLJ

66

execution

context

88

execution

control
SQLJ

88

extended

client

information
DB2

Universal

JDBC

Driver

51

EXTERNAL
clause

of

CREATE

FUNCTION

statement

173

clause

of

CREATE

PROCEDURE

statement

173

F
FFFFF

SQLSTATE
meaning

for

JDBC

programs

26

meaning

for

SQLJ

programs

270

FINAL

CALL

clause
CREATE

FUNCTION

statement

175

formatting

trace

data
SQLJ

270

G
global

properties

file
parameters

219

global

transaction
JDBC

and

SQLJ

259

glossary

281

graphic

string

constant
JDBC

application

33

SQLJ

application

87

324

Application

Programming

Guide

and

Reference

for

Java™

H
host

expression
SQLJ

56,

133

I
identity

column
retrieving

in

JDBC

application

35

implements

clause
SQLJ

134

installation
JDBC

and

SQLJ

217

interpreted

Java

stored

procedure
program

preparation

211

interpreted

Java

user-defined

function
program

preparation

211

isolation

level
JDBC

13

SQLJ

63

iterator
for

positioned

DELETE

71

for

positioned

UPDATE

71

obtaining

JDBC

result

sets

from

79

iterator

conversion

clause
SQLJ

142

iterator

declaration

clause
SQLJ

137

J
JAR

file
creating

for

JDBC

routine

214

creating

for

SQLJ

routine

214

defining

to

DB2

173

Java

application
customizing

environment

219,

236

Java

stored

procedure
defining

to

DB2

173

differences

from

Java

program

181

differences

from

other

stored

procedures

181

parameters

specific

to

173

writing

181

Java

thread

261

Java

user-defined

function
defining

to

DB2

173

differences

from

Java

program

181

differences

from

other

user-defined

functions

181

parameters

specific

to

173

writing

181

JDBC
accessing

packages

for

6

batch

updates

43

configuring

219,

236

data

type

mappings

101

environment

variables

219,

236

executing

SQL

15

handling

SQLWarning

26,

27

installation

217

isolation

level

13

problem

diagnosis

263

JDBC

(continued)
ResultSet

holdability

46,

47

running

a

program

216

sample

program

241

scrollable

ResultSet

46,

47

updatable

ResultSet

46,

47

JDBC

APIs
comparison

of

driver

support

114

JDBC

application
basic

steps

3

declaring

variables

6

example

3

JDBC

connection
using

14

JDBC

drivers
JDBC

differences

161

SQLJ

differences

164

JDBC

extensions
DB2

Universal

JDBC

Driver

150

JDBC

transaction
commiting

14

rolling

back

14

JDBC/SQLJ

Driver

for

OS/390
security

250

JDBC/SQLJ

Driver

for

OS/390

multiple

context

support
description

261

K
Kerberos

security
DB2

Universal

JDBC

Driver

247

L
LANGUAGE

clause

of

CREATE

FUNCTION

statement

173

clause

of

CREATE

PROCEDURE

statement

173

LOB

column
choosing

compatible

Java

data

types,

JDBC

30

choosing

compatible

Java

data

types,

SQLJ

82

LOB

locator
DB2

Universal

JDBC

Driver

82

LOB

support
beyond

JDBC

specification

28,

29

DB2

Universal

JDBC

Driver,

JDBC

28

DB2

Universal

JDBC

Driver,

SQLJ

82

LOB

locator

28,

29

M
modifying

DB2

tables,

SQLJ

66

multiple

context

support
connecting

when

enabled

261

connecting

when

not

enabled

261

enabling

262

multiple

result

sets
retrieving

from

a

stored

procedure

89

retrieving,

JDBC

37

multithreading

250

Index

325

N
named

iterator
passed

as

variable

94

result

set

iterator

67

NO

SQL
clause

of

CREATE

FUNCTION

statement

175

clause

of

CREATE

PROCEDURE

statement

175

notices,

legal

277

O
online

checking
for

better

optimization

205

needed

during

customization

205

restriction

205

P
PARAMETER

STYLE
clause

of

CREATE

FUNCTION

statement

175

clause

of

CREATE

PROCEDURE

statement

175

ParameterMetaData
retrieving

parameter

information,

JDBC

42

positioned

delete
SQLJ

71

positioned

iterator
passed

as

variable

94

result

set

iterator

69

positioned

update
SQLJ

71

PreparedStatement

methods
SQL

statements

with

no

parameter

markers

18

SQL

statements

with

parameter

markers

17,

18

problem

diagnosis
JDBC

263

SQLJ

263,

270

program

control
setting

222,

235

program

preparation
interpreted

Java

stored

procedure

211

interpreted

Java

stored

procedure

with

no

SQLJ

212

interpreted

Java

stored

procedure

with

SQLJ

212

interpreted

Java

user-defined

function

211

interpreted

Java

user-defined

function

with

no

SQLJ

212

interpreted

Java

user-defined

function

with

SQLJ

212

SQLJ

187

PROGRAM

TYPE

clause
CREATE

FUNCTION

statement

175

CREATE

PROCEDURE

statement

175

properties
DB2

Universal

JDBC

Driver

106

global
parameters

219

run-time
CICS

273

parameters

236

R
releasing

resources
closing

connection

14,

65

restrictions
SQLJ

variable

names

57

result

set

iterator
definition

and

use

in

same

file

67

description

66

named

iterator

67

positioned

iterator

69

public

declaration

in

separate

file

67,

79

restrictions

on

declaration

69

retrieving

rows

in

SQLJ

66,

67,

69

ResultSet

holdability
JDBC

46,

47

ResultSetMetaData
retrieving

result

set

information,

JDBC

40

retrieving
data

from

DB2

tables,

JDBC

16

retrieving

data
from

DB2

tables,

SQLJ

66

using

multiple

instances

of

an

iterator,

SQLJ

76

using

multiple

iterators

on

a

DB2

table,

SQLJ

74

retrieving

data

from

DB2

tables
JDBC

18

retrieving

data

source

information
JDBC

41

retrieving

parameter

information
JDBC

42

retrieving

result

set

information
JDBC

40

retrieving

the

SQLCA
DB2Diagnosable

class

77

return

codes
DB2

Universal

JDBC

Driver

errors

165

roll

back
transaction,

JDBC

14

ROWID
DB2

Universal

JDBC

Driver

32,

85

RRSAF

250

RUN

OPTIONS

clause
CREATE

FUNCTION

statement

175

CREATE

PROCEDURE

statement

175

run-time

properties

file
CICS

273

parameters

236

running

a

program
SQLJ

and

JDBC

216

S
sample

program
JDBC

241

savepoint
using

in

JDBC

application

34

using

in

SQLJ

application

64

SCRATCHPAD

clause
CREATE

FUNCTION

statement

175

scrollable

iterator
SQLJ

96

326

Application

Programming

Guide

and

Reference

for

Java™

scrollable

ResultSet
JDBC

46,

47

security
DB2

Universal

JDBC

Driver

243

JDBC/SQLJ

Driver

for

OS/390

250

SECURITY
clause

of

CREATE

FUNCTION

176

clause

of

CREATE

PROCEDURE

176

security,

encrypted

user

ID

or

encrypted

password
DB2

Universal

JDBC

Driver

246

security,

Kerberos
DB2

Universal

JDBC

Driver

247

security,

user

ID

and

password
DB2

Universal

JDBC

Driver

243

security,

user

ID-only
DB2

Universal

JDBC

Driver

245

serialized

profile
customizing

194

SET

TRANSACTION

clause
SQLJ

141

SQL

error
using

staticPositioned

206

SQL

statement
handling

errors

in

SQLJ

77

SQLException
handling

with

DB2

Universal

JDBC

Driver

20

SQLJ
accessing

packages

for

56

assignment

clause

141

batch

updates

90

binding

a

package

207

binding

a

plan

207

calling

a

stored

procedure

76

collecting

trace

data

263

comment

58

connecting

to

a

data

source

58

connection

declaration

clause

136

context

clause

138,

139

creating

and

modifying

DB2

tables

66

creating

DBRMs

194

db2profc

command

194

db2sqljcustomize

command

194

environment

variables

219,

236

error

handling

77

executable

clause

138

executing

SQL

66

execution

control

88

formatting

data

270

handling

SQLWarning

78

host

expression

56,

133

implements

clause

134

installation

217

installing

the

run-time

environment

219,

236

isolation

level

63

iterator

conversion

clause

142

iterator

declaration

clause

137

multiple

instances

of

an

iterator

76

multiple

iterators

on

a

table

74

problem

diagnosis

263,

270

program

preparation

187

result

set

iterator

66

SQLJ

(continued)
retrieving

the

SQLCA

77

running

a

program

216

running

diagnosis

utilities

263,

270

scrollable

iterator

96

SET

TRANSACTION

clause

141

translating

source

code

189

using

DataSource

interface

61

using

default

connection

63

using

DriverManager

interface

58

with

clause

134

SQLJ

application
basic

steps

53

example

53

SQLJ

clause

133

SQLJ

execution

context

88

SQLJ

variable

names
restrictions

57

sqlj.runtime.ConnectionContext
methods

called

in

applications

145

sqlj.runtime.ExecutionContext
methods

called

in

applications

143

sqlj.runtime.ForUpdate
for

positioned

UPDATE

and

DELETE

146

sqlj.runtime.NamedIterator
methods

called

in

applications

146

sqlj.runtime.PositionedIterator
methods

called

in

applications

146

sqlj.runtime.ResultSetIterator
methods

called

in

applications

147

sqlj.runtime.Scrollable
methods

called

in

applications

147

SQLSTATE

FFFFF
meaning

for

JDBC

programs

26

meaning

for

SQLJ

programs

270

SQLSTATEs
DB2

Universal

JDBC

Driver

errors

165

SQLWarning
handling

in

JDBC

26,

27

handling

in

SQLJ

78

SSID
how

the

DB2

Universal

JDBC

Driver

determines

220

how

the

JDBC/SQLJ

Driver

for

OS/390

determines

238

Statement.executeQuery
retrieving

data

from

DB2

tables

16

staticPositioned
implications

of

using

206

stored

procedure
access

to

z/OS

UNIX

System

Services

176

calling,

SQLJ

76

Java

167

retrieving

multiple

result

sets,

JDBC

37

retrieving

result

sets

89

returning

result

set

183

syntax

diagram
how

to

read

ix

Index

327

T
thread,

Java

261

tracing
DB2

Universal

JDBC

Driver,

example

265

translating

source

code
SQLJ

189

U
updatable

ResultSet
JDBC

46,

47

updating

data

in

DB2

tables
JDBC

17

user

ID

and

password

security
DB2

Universal

JDBC

Driver

243

user

ID-only

security
DB2

Universal

JDBC

Driver

245

user-defined

function
access

to

z/OS

UNIX

System

Services

176

Java

167

W
WebSphere

262

with

clause
SQLJ

134

with

positioned

iterators

69

WLM

ENVIRONMENT
clause

of

CREATE

FUNCTION

statement

175

clause

of

CREATE

PROCEDURE

statement

175

Z
z/OS

UNIX

System

Services
authority

to

access

176

328

Application

Programming

Guide

and

Reference

for

Java™

Readers’

Comments

—

We’d

Like

to

Hear

from

You

DB2

Universal

Database

for

z/OS

Application

Programming

Guide

and

Reference

FOR

JAVA
™

Version

8

Publication

No.

SC18-7414-00

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC18-7414-00

SC18-7414-00

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

International

Business

Machines

Corporation

H150/090

555

Bailey

Avenue

San

Jose,

CA

95141-9989

U.

S.

A.

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program

Number:

5625-DB2

Printed

in

USA

SC18-7414-00

Sp
in
e

in
fo
rm
at
io
n:

 IB
M

DB
2

Un
iv

er
sa

l D
at

ab
as

e
fo

r z
/O

S

Ve
rs

io
n

8

Ap
pl

ic
at

io
n

Pr
og

ra
m

m
in

g

Gu
id

e

an
d

Re
fe

re
nc

e

fo
r

Ja
va

™

�
�

�

	Contents
	About this book
	Who should read this book
	Terminology and citations
	How to read the syntax diagrams
	Accessibility
	How to send your comments

	Summary of changes to this book
	Chapter 1. Introduction to Java application support
	Chapter 2. JDBC application programming
	Basic JDBC application programming concepts
	Basic steps in writing a JDBC application
	Java packages for JDBC support
	Variables in JDBC applications
	How JDBC applications connect to a data source
	Connecting to a data source using the DriverManager interface with the DB2 Universal JDBC Driver
	Connecting to a data source using the DriverManager interface with a JDBC/SQLJ Driver for OS/390
	Connecting to a data source using the DataSource interface
	Setting the isolation level for a JDBC transaction
	JDBC connection objects
	Committing or rolling back JDBC transactions
	Closing a connection to a JDBC data source
	JDBC interfaces for executing SQL
	Using the Statement.executeUpdate method to create and modify DB2 objects
	Using the Statement.executeQuery method to retrieve data from DB2 tables
	Using the PreparedStatement.executeUpdate method to update data in DB2 tables
	Using the PreparedStatement.executeQuery method to retrieve data from DB2
	Using CallableStatement methods to call stored procedures
	Handling an SQLException under the DB2 Universal JDBC Driver
	Handling an SQLException under the JDBC/SQLJ Driver for OS/390
	Handling an SQLWarning under the DB2 Universal JDBC Driver
	Handling an SQLWarning under the JDBC/SQLJ Driver for OS/390

	Advanced JDBC application programming concepts
	LOBs in JDBC applications with the DB2 Universal JDBC Driver
	Using large objects (LOBs) in JDBC applications with the JDBC/SQLJ Driver for OS/390
	Java data types for retrieving or updating LOB column data in JDBC applications
	ROWIDs in JDBC with the DB2 Universal JDBC Driver
	Using ROWIDs with the JDBC/SQLJ Driver for OS/390
	Using graphic string constants in JDBC applications
	Distinct types in JDBC applications
	Savepoints in JDBC applications
	Retrieving identity column values in JDBC applications
	Retrieving multiple result sets from a stored procedure in a JDBC application
	Using ResultSetMetaData to learn about a ResultSet
	Using DatabaseMetaData to learn about a data source
	Using ParameterMetaData to learn about parameters in a PreparedStatement
	Making batch updates in JDBC applications
	Retrieving information from a BatchUpdateException
	Characteristics of a JDBC ResultSet under the DB2 Universal JDBC Driver
	Specifying updatability, scrollability, and holdability for ResultSets in JDBC applications
	Creating and deploying DataSource objects
	Providing extended client information to the DB2 server with the DB2 Universal JDBC Driver

	Chapter 3. SQLJ application programming
	Basic SQLJ application programming concepts
	Basic steps in writing an SQLJ application
	Java packages for SQLJ support
	Variables in SQLJ applications
	Comments in an SQLJ application
	Connecting to a data source using SQLJ
	Setting the isolation level for an SQLJ transaction
	Committing or rolling back SQLJ transactions
	Savepoints in SQLJ applications
	Closing the connection to a data source in an SQLJ application
	SQL statements in an SQLJ application
	Creating and modifying DB2 objects in an SQLJ application
	How an SQLJ application retrieves data from DB2 tables
	Using a named iterator in an SQLJ application
	Using a positioned iterator in an SQLJ application
	Performing positioned UPDATE and DELETE operations in an SQLJ application
	Multiple open iterators for the same SQL statement in an SQLJ application
	Multiple open instances of an iterator in an SQLJ application
	Calling stored procedures in an SQLJ application
	Handling SQL errors in an SQLJ application
	Handling SQL warnings in an SQLJ application

	Advanced SQLJ application programming concepts
	Using SQLJ and JDBC in the same application
	LOBs in SQLJ applications with the DB2 Universal JDBC Driver
	Java data types for retrieving or updating LOB column data in SQLJ applications
	Using large objects (LOBs) in SQLJ applications with the JDBC/SQLJ Driver for OS/390
	ROWIDs in SQLJ with the DB2 Universal JDBC Driver
	Using graphic string constants in SQLJ applications
	Distinct types in SQLJ applications
	Controlling the execution of SQL statements in SQLJ
	Retrieving multiple result sets from a stored procedure in an SQLJ application
	Making batch updates in SQLJ applications
	Iterators as passed variables for positioned UPDATE or DELETE operations in an SQLJ application
	Using scrollable iterators in an SQLJ application

	Chapter 4. JDBC and SQLJ reference
	Java, JDBC, and SQL data types
	Properties for the DB2 Universal JDBC Driver
	DataSource properties for the JDBC/SQLJ 2.0 Driver for OS/390
	Comparison of driver support for JDBC APIs
	SQLJ statement reference
	SQLJ clause
	SQLJ host-expression
	SQLJ implements-clause
	SQLJ with-clause
	SQLJ connection-declaration-clause
	SQLJ iterator-declaration-clause
	SQLJ executable-clause
	SQLJ context-clause
	SQLJ statement-clause
	SQLJ SET-TRANSACTION-clause
	SQLJ assignment-clause
	SQLJ iterator-conversion-clause

	Selected sqlj.runtime classes and interfaces
	DB2 Universal JDBC Driver reference information
	Summary of DB2 Universal JDBC Driver extensions to JDBC
	JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC drivers
	SQLJ differences between the DB2 Universal JDBC Driver and other DB2 JDBC drivers
	Error codes issued by the DB2 Universal JDBC Driver
	SQLSTATEs issued by the DB2 Universal JDBC Driver

	Chapter 5. Creating Java stored procedures and user-defined functions
	Setting up the environment for Java routines
	Setting up the environment for interpreted Java routines
	Prerequisites for interpreted Java routines
	Setting up the WLM application environment for interpreted Java routines
	Setting the run-time environment for interpreted Java stored procedures

	Defining a Java routine to DB2
	Defining a JAR file for a Java routine to DB2
	Calling SQLJ.INSTALL_JAR
	SQLJ.INSTALL_JAR authorization
	SQLJ.INSTALL_JAR syntax
	SQLJ.INSTALL_JAR parameters

	Calling SQLJ.REPLACE_JAR
	SQLJ.REPLACE_JAR authorization
	SQLJ.REPLACE_JAR syntax
	SQLJ.REPLACE_JAR parameters

	Calling SQLJ.REMOVE_JAR
	SQLJ.REMOVE_JAR authorization
	SQLJ.REMOVE_JAR syntax
	SQLJ.REMOVE_JAR parameters

	Calling SQLJ.DB2_INSTALL_JAR
	SQLJ.DB2_INSTALL_JAR authorization
	SQLJ.DB2_INSTALL_JAR syntax
	SQLJ.DB2_INSTALL_JAR parameters

	Calling SQLJ.DB2_REPLACE_JAR
	SQLJ.DB2_REPLACE_JAR authorization
	SQLJ.DB2_REPLACE_JAR syntax
	SQLJ.DB2_REPLACE_JAR parameters

	Writing a Java routine
	Differences between Java routines and stand-alone Java programs
	Differences between Java routines and other routines
	Using static and non-final variables in a Java routine
	Writing a Java stored procedure to return result sets

	Testing a Java routine

	Chapter 6. Preparing and running JDBC and SQLJ programs
	Preparing JDBC programs for execution
	Preparing SQLJ programs for execution
	Translating and compiling SQLJ source code
	sqlj command for the DB2 Universal JDBC Driver
	sqlj command for the JDBC/SQLJ Driver for OS/390

	Customizing an SQLJ serialized profile
	Customizing serialized profiles for a DB2 Universal JDBC Driver
	Customizing serialized profiles for the JDBC/SQLJ Driver for OS/390
	db2sqljcustomize usage notes

	Binding packages or plans for SQLJ programs
	Binding packages after running db2sqljcustomize
	Binding packages and plans after running db2profc

	Preparing Java routines for execution
	Preparing interpreted Java routines with no SQLJ statements
	Preparing interpreted Java routines with SQLJ statements
	Creating JAR files for Java routines
	Example of preparing a Java routine for execution

	Running JDBC and SQLJ programs

	Chapter 7. Installing JDBC and SQLJ
	Installing the DB2 Universal JDBC Driver
	Loading the DB2 Universal JDBC Driver libraries
	Setting environment variables for the DB2 Universal JDBC Driver
	Customizing the DB2 Universal JDBC Driver global properties file
	Setting program control for the DB2 Universal JDBC Driver
	Program control for DLLs in HFS
	Program control for z/OS data sets

	Enabling the DB2-supplied stored procedures used by the DB2 Universal JDBC Driver
	Creating the WLM address space startup procedure for the DB2 Universal JDBC Driver stored procedures
	Defining the WLM application environment for the the DB2 Universal JDBC Driver stored procedures
	Defining the DB2 Universal JDBC Driver stored procedures to DB2 and creating the stored procedure packages

	Binding the packages for the DB2 Universal JDBC Driver
	DB2binder syntax
	DB2Binder parameter descriptions
	DB2Binder example

	Enabling distributed transactions that include DB2 UDB for OS/390 and z/OS Version 7 servers
	DB2T4XAIndoubtUtil syntax
	DB2T4XAIndoubtUtil parameter descriptions
	DB2T4XAIndoubtUtil example

	Converting JDBC/SQLJ Driver for OS/390 serialized profiles for the DB2 Universal JDBC Driver
	db2sqljupgrade syntax
	Parameter descriptions

	Enabling retrieval of DBCLOB columns with LOB locators on DB2 UDB for OS/390 and z/OS servers
	DB2LobTableCreator syntax
	DB2LobTableCreator parameter descriptions
	DB2LobTableCreator example

	Installing the z/OS Application Connectivity to DB2 for z/OS feature
	Loading the z/OS Application Connectivity to DB2 for z/OS libraries
	Setting environment variables for z/OS Application Connectivity to DB2 for z/OS

	Installing the JDBC/SQLJ Driver for OS/390
	Loading the JDBC and SQLJ libraries
	Setting DB2 subsystem parameters for SQLJ support
	Setting program control for the JDBC/SQLJ Driver for OS/390
	Program control for DLLs in HFS
	Program control for z/OS data sets

	Setting environment variables for the JDBC/SQLJ Driver for OS/390
	The SQLJ/JDBC run-time properties file
	Properties in the JDBC/SQLJ Driver for OS/390 SQLJ/JDBC run-time properties file
	Customizing the JDBC profile (optional)
	Syntax
	Parameter descriptions
	Output

	Binding the DBRMs
	Getting started using the sample Java applications

	Chapter 8. JDBC and SQLJ security
	Security under the DB2 Universal JDBC Driver
	User ID and password security under the DB2 Universal JDBC Driver
	User ID-only security under the DB2 Universal JDBC Driver
	Encrypted user ID security or encrypted password security under the DB2 Universal JDBC Driver
	Kerberos security under the DB2 Universal JDBC Driver
	Security under the JDBC/SQLJ Driver for OS/390
	Determining an authorization ID with the JDBC/SQLJ Driver for OS/390
	DB2 attachment types and security

	Chapter 9. JDBC and SQLJ connection pooling support
	Chapter 10. Universal Driver type 4 connectivity JDBC and SQLJ distributed transaction support
	Chapter 11. JDBC and SQLJ global transaction support
	Chapter 12. JDBC/SQLJ Driver for OS/390 multiple z/OS context support
	Connecting when multiple z/OS context support is not enabled
	Connecting when multiple z/OS context support is enabled
	Enabling multiple z/OS context support
	Multiple context performance
	Connection sharing

	Chapter 13. Diagnosing JDBC and SQLJ problems
	Diagnosing JDBC and SQLJ problems under the DB2 Universal JDBC Driver
	JDBC and SQLJ problem diagnosis with the DB2 Universal JDBC Driver
	Example of tracing under the DB2 Universal JDBC Driver
	Formatting trace data for C/C++ native driver code with the DB2 Universal JDBC Driver

	Diagnosing SQLJ problems with the JDBC/SQLJ Driver for OS/390
	Formatting trace data with the JDBC/SQLJ Driver for OS/390
	Running utilities to format diagnostic data
	Using the profp utility to format information about a serialized profile
	Using the db2profp utility to format information about a JDBC/SQLJ Driver for OS/390 customized profile

	Appendix. Special considerations for CICS applications
	Choosing parameter values for the SQLJ/JDBC run-time properties file
	Choosing parameter values for the db2genJDBC utility
	Choosing the number of cursors for JDBC result sets
	Setting environment variables for the CICS environment
	Connecting to DB2 in the CICS environment
	Commit and rollback processing in CICS SQLJ and JDBC applications
	Abnormal terminations in the CICS attachment facility
	Running traces in a CICS environment

	Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

